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Abstract Marine vertebrate strandings offer an opportunistic sampling scheme that can

provide abundant data over long periods. Because the stranding process involves biolog-

ical, physical and sociological parameters, confounding complicates the interpretation of

results. The statistical analysis of these data relies on generalized linear or additive models

in order to infer long-term trends, but does not easily account for drift or variation in

reporting rates. Here, we capitalized on county-level (administrative) variation following

the passing of a law for compulsory reporting of stranded marine mammals in France to

investigate how variation in reporting rates may affect the observed trend in stranded small

delphinids in the Bay of Biscay. Using a time-series spanning more than 30 years across

eight administrative counties, we built variance partitioning models for the analysis of

count data. We discussed the choice of an appropriate likelihood to conclude the Negative

Binomial useful and interpretable in the context of small delphinid strandings. We

expanded the model with a recent methodology to detect structural breaks in the time

series, focusing on overdispersion. We performed statistical robustness checks with respect

to variations in reporting rates and discuss their causal interpretation in the context of

observational data. Stranding frequencies increased on average 7-fold over 30 years. We

conclude that reporting rates to the French stranding network have been stable since the

early 1990s, and the average 3-fold increase in stranded small delphinids observed in the

Bay of Biscay since 1990 is due to other factors, including bycatch. Codes and data are

available to replicate the analysis to other national stranding networks.
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Introduction

The European Union issued a Marine Strategy Framework Directive (MSFD hereafter) to

protect and restore the ecological integrity of marine ecosystems within member states.

The ambitious goal of the MSFD is to achieve ‘‘Good Environmental Status’’ (GES

hereafter) of marine ecosystems on a suite of 11 descriptors, including biodiversity. GES is

defined as ‘‘the environmental status of marine waters where these provide ecologically

diverse and dynamic oceans and seas [. . .], and the use of the marine environment is at a

level that is sustainable [. . .]’’ (Article 3.5 of Directive 2008/56/EC of the European

Parliament and of the Council of 17 June 2008). Among the threats looming on marine

biodiversity, bycatch or the capture or entanglement of non-target species in fishing gear, is

foremost (DeMaster et al. 2001; Reeves et al. 2013). Monitoring marine species is para-

mount to diagnose impediments or progress towards GES. Monitoring marine mammals is

however challenging (Evans and Hammond 2004). While dedicated surveys are needed to

obtain crucial parameters such as absolute abundances (Hammond et al. 2013), the low

temporal frequency at which such surveys can be carried out results in low statistical power

to detect declines (Taylor et al. 2007). Yet the MSFD aims at monitoring relative progress

and diagnosing problems at a finer temporal resolution: complementary data are needed in

order to implement conservation measures in a timely fashion.

Marine vertebrate strandings offer an opportunistic sampling scheme that is valuable to

study abundant, rare and cryptic species. Dedicated at-sea surveys for such species are

logistically difficult and costly (Evans and Hammond 2004; Thompson et al. 2012).

Stranded cetaceans provide raw material for many scientific purposes: for example pop-

ulation genetics (Amaral et al. 2012; Bilgmann et al. 2011), reconstructing individual

reproductive history (Dabin et al. 2008), foraging ecology (Spitz et al. 2012; Dunshea et al.

2013), documenting temporal trends (Fruet et al. 2012; Pikesley et al. 2012; Truchon et al.

2013; Williams et al. 2011); explaining extreme stranding events (Fernández et al. 2012;

Jepson et al. 2013; Rubio-Guerri et al. 2013; Williams et al. 2011; Wright et al. 2013); or

estimating at-sea mortality (de Boer et al. 2012; Koch et al. 2013; Peltier et al. 2013;

Williams et al. 2011).

Stranding is the result of at-sea mortality, buoyancy, local drift and prevailing winds,

shore substrate and detection probability (Peltier et al. 2012, 2013; Williams et al. 2011).

Peltier et al. (2014) described stranding data as 3-dimensional: (1) a biological dimension

which includes mortality rate and abundance; (2) a physical dimension linked to the drift

process; and (3) a societal dimension encompassing detection and reporting of stranded

carcasses by citizens. Interpreting stranding records is difficult as the outcome of interest, a

standardized number of stranded carcasses, results from many processes interacting along

these three dimensions (Peltier et al. 2012; Williams et al. 2011). In particular stranding

probabilities are difficult to estimate in situ, but substantial progress has been made with

drifter experiments (Koch et al. 2013) or physical modelling of drift and winds (Peltier

et al. 2012, 2013, 2014).

In monitoring stranded cetaceans, interest also lies in elucidating the causes behind

observed patterns. Causal inference usually follows from evidencing a statistically sig-

nificant relationship over time. Implicit here is the view of causation as ‘‘robust depen-

dence’’ (Goldthrope 2001). This view amounts to little more than statistics because no

explicit reference to theory needs to be made (Goldthrope 2001). While monitoring may be

of political value, it can be scientifically inefficient without the ability to manipulate

(Yoccoz et al. 2001). The view that only manipulation legitimates causal inference falls

under the view of ‘‘causation as consequential manipulation’’ (Goldthrope 2001). A causal
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model goes beyond mere description: it provides means to predict how a response variable

will change when one or more causal variables are manipulated (Rubin 2006). With

stranding records, ‘time’ is not a variable that can be manipulated, nor is it usually a well-

defined treatment (Cox 1992; Hölker et al. 2007). However, a limitation of this view of

‘‘causation as consequential manipulation’’ is its lack of reference to a generative process

operating at a level below that of the observed pattern (Cox 1992; Goldthrope 2001). This

realization invites for another view of causation: ‘‘causation as generative process’’

(Goldthrope 2001). Under this view, both theory (at a proximate and mechanistic level)

and predictability (at a larger scale) are considered in tandem with robust statistical

dependence to perform causal inference with observational data.

Establishing causation requires an interpretable model with good predictive ability, and

that potential confounders are taken into account to obtain robust results. Because the

number of stranded carcasses is the result of many underlying processes (Peltier et al.

2012), any detected trend in stranding records may be due, for example, to varying dis-

covery and reporting rates (hereafter detection probability) of carcasses over time. Albeit

direct manipulation is usually impossible, ‘‘quasi-experiments’’ may sometimes seren-

dipitously arise in observational studies: any event unrelated to the outcome of interest that

generates variation provides an opportunity to mimic an experimental situation. In par-

ticular geographical variation may provide opportunities to attempt causal inference with

observational data. In large countries, the subnational organization of administrative ter-

ritories offer means to investigate patterns of variations while still holding important

factors, such as legislation, constant (Barr et al. 2012). We propose to analyze French

stranding data at the administrative county level to capitalize on known differences in local

conditions between counties. Eight French counties border the Bay of Biscay, with ‘‘Les

Landes’’ county differing in one major respect: since 1991, monitoring has been institu-

tionalized. In this county, local permanent staff is in charge of monitoring and cleaning

beaches, for aesthetic reasons linked to tourism. We expect reporting rates of stranded

cetaceans to have remained fairly constant since the 1990s there.

We built within a Bayesian framework statistical models for analyzing data collected

over [ 30 years of daily monitoring of stranded carcasses of Common dolphins (Delphis

delphis) and Striped dolphins (Stenella coeruleoalba) along more than 3,000 km of

shorelines in the Bay of Biscay (Fig. 1). Emphasis was first put on model predictive ability:

we used statistical models and assess their ability to generate data similar to the observed

data (‘‘causation as generative process’’). Secondly, we checked the robustness of our

results to the inclusion of variables related to reporting rates. Throughout, we focused on

modelling overdispersion. Finally, we discussed the biological interpretation of this

parameter in the context of small delphinid strandings.

Materials and methods

Ethics statement

The study is entirely based on data collected from cetacean carcasses found stranded along

the French coasts and did not involve observation or experimentation on captive animals

by any means, nor did it rely on field observation of live animals.

Observatoire PELAGIS (formerly ‘‘Centre de Recherche sur les Mammifères Marins’’)

is the institution permanently in charge of coordinating the French marine mammal

stranding network (‘‘Réseau National d’Échouage’’, hereafter RNE) under the decree of
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November the tenth of 2010, jointly taken by the Ministery in charge of the Environment

and the Ministery in charge of Fisheries, regarding the use of biological data and samples

collected on stranded marine mammals for scientific research and monitoring purposes. All

species of marine mammals occurring in waters under French juridiction are protected by

the decree of July the first of 2011.1 Since the early 2000s, the French Ministry of the

Environment, Sustainable Development and Ecology mandates Observatoire PELAGIS

(UMS 3462 du CNRS, Université de La Rochelle) to centralize information, biological

samples and data on marine mammals in mainland France. It authorizes Observatoire

PELAGIS staff and trained volunteers (that is, holders of a ‘‘Green Card’’ delivered upon

completion of a training program dispensed by Observatoire PELAGIS) to manipulate and

sample cetacean carcasses for scientific purposes. In the present study, sampling only

involves species determination. This work was carried out following European regulations

on the use of stranded dead cetaceans for scientific purposes.

Sample collection

The RNE is dedicated to the monitoring of marine mammal populations. Around 260

trained volunteers are currently taking an active part in the network. These volunteers

make the complete coverage of French coastlines possible. Standardized training of vol-

unteers by permanent Observatoire PELAGIS staff, which takes place twice a year, ensure

the homogeneity, comparability and standardization of data collection procedures in the

Fig. 1 Bay of Biscay. The eight French administrative counties (‘‘Départements’’) bordering the Atlantic
Ocean and included in the analysis are emphasized with color. On a South–North gradient, these counties
are ‘‘Pyrénées Atlantiques’’, ‘‘Les Landes’’, ‘‘Gironde’’, ‘‘Charente Maritime’’, ‘‘Vendée’’, ‘‘Loire
Atlantique’’, ‘‘Morbihan’’ and ‘‘Finistère’’. The French Exclusive Economic Zone extending in the Atlantic
Ocean is delineated with a black line

1 http://www.legifrance.gouv.fr/affichTexte.do?cidTexte=JORFTEXT000024396902.
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field. Data are further checked for consistency or errors before their incorporation in a

national database managed by Observatoire PELAGIS. Each stranded animal corresponds

to a datum in the database.

The RNE was established in the early 1970s, but its modus operandi is considered

unchanged since the early 1980s. The mandatory reporting of cetacean strandings to RNE by

town and village administrations (municipalities) was enforced by law in 1988. Among the

[ 36,000 French municipalities, 800 have a geographic access to the sea, and may report a

stranded animal. We used data collected in the eight counties (‘‘départements’’) bordering the

Bay of Biscay (Fig. 1). These counties encompass approximatively 300 coastal municipal-

ities, all of which have reported at least one stranded cetacean to RNE since its inception.

Local citizens dwelling in a coastal municipality may spot a stranded cetacean and

either contact their local authorities or Observatoire PELAGIS directly, which will sub-

sequently send a RNE volunteer to collect data on the stranded cetacean. Thus densely

inhabited coastal towns may have higher detection rate of strandings. Demographic data on

these municipalities have been collected by ‘‘Institut National de la Statistique et des

Études Économiques’’ approximatively every ten year since the 1970s. We downloaded

demographic data from http://www.insee.fr in order to incorporate this covariate as a

statistical control in models (see Sect. 2.7).

Since 1998, Observatoire PELAGIS has set up an internet site with contact informations

and what to do when a stranded cetacean is found. Data on French household access to

internet at the nation level were taken from ‘‘Centre de Recherche pour l’Étude et

l’Observation des Conditions de Vie’’ 2 in order to incorporate this covariate as a statistical

control in models (see 2.7 below).

In this study, we aggregated the number of small delphinid strandings over a period of ten

days at the county level. Thirty-three years of data from 1980 till 2012 were extracted for each

county. Data are an array of three periods of 10 days times 12 months times 33 years times

eight counties, that is a sample size of nearly 10,000 ð3� 12� 33� 8 ¼ 9;504Þ. Small

delphinids are meant to include both the Common dolphins Delphis delphis and Striped

dolphins Stenella coeruleoalba. These two species are similar in size, and were pooled in this

analysis because carcasses were sometimes too putrefied to allow unambiguous species

identification. Pooling makes the assumption that stranded carcasses of these two very similar

species would trigger the same response by casual observers.

Coastline lengths of sea-bordering counties were taken from the ‘‘Observatoire National

de la Mer et du Littoral’’.3 Coastline lengths of the eight French Atlantic counties varies by

one order of magnitude (‘‘Pyrénées Atlantiques’’ \100 km and ‘‘Finistère’’ [ 1,000 km),

and were incorporated in every model to account for the positive relationship between

stranding probability and seashore length.

Notations

EðxÞ and VðxÞ are respectively the mean and variance of the random variable x. PðkÞ
denotes the Poisson distribution of mean parameter k. NBðoverdispersion; kÞ denotes the

Negative Binomial distribution of mean parameter k and overdispersion parameter (Zheng

et al. 2006). The usual parametrization of a Negative binomial (for example, Gelman et al.

2003 page 576) is NBðg; jÞ where k ¼ g
j

and overdispersion ¼ 1þ 1

j
, but we chose to

2 http://www.credoc.fr/.
3 http://www.onml.fr/accueil/.
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follow the more convenient parametrization of Zheng et al. 2006. UðL;UÞ denotes the

uniform distribution with lower bound L and upper bound U. Nðl;rÞ denotes the normal

distribution of mean parameter l and scale parameter r. Cðl;rÞ denotes the Cauchy

distribution of mean parameter l and scale parameter r. Sðl;r; mÞ denotes the Student

distribution of mean parameter l, scale parameter r and m degrees of freedom.

Gðshape; rateÞ denotes the Gamma distribution parametrized in terms of a shape and rate

(or inverse-scale) parameters.

Statistical analysis of raw counts of stranded Cetaceans

Strandings are count data, often analyzed with Generalized Linear Models or Generalized

Additive Models with a Poisson likelihood (Pikesley et al. 2012; Fruet et al. 2012). The

Poisson distribution is useful to model integer value variables (O’Hara and Kotze 2010), but it

is restrictive because it assumes a variance equal to the mean (Berk and MacDonald 2007).

Count data often exhibit two characteristics: (1) a variance larger than the mean, that is

overdispersion (Berk and MacDonald 2007); and (2) an excess of zeros (Martin et al. 2005).

The Negative Binomial distribution expands the Poisson distribution to account for over-

dispersion (Berk and MacDonald 2007): the latter scales the variance with the mean

(VðyÞ ¼ overdispersion� EðyÞ). The Poisson distribution assumes overdispersion ¼ 1,

while the Negative Binomial distribution assumes overdispersion� 1. Overdispersion arises

because observations are correlated (Berk and MacDonald 2007): in the case of marine

mammals, the same process (for example epizootics (Carpenter 2013; Di Guardo 2012))

affecting a demographic unit may induce a multiple strandings event, thus violating the

implicit assumption of independence between strandings under a Poisson likelihood.

Excess zeros in count data may result from imperfect detection (Martin et al. 2005; Péron

et al. 2010). Given the observational nature of strandings, detection probability may be an

issue. Zero-inflated models offers a solution to model imperfect detection. For data y mod-

elled with a Poisson likelihood, the frequency ratio of zero and single events is

Prðy ¼ 0Þ
Prðy ¼ 1Þ ¼

1

EðyÞ. For data y modelled with a Negative Binomial likelihood, this ratio

becomes
Prðy ¼ 0Þ
Prðy ¼ 1Þ ¼

overdispersion

EðyÞ . Because the overdispersion parameter is at least 1, a

negative binomial distribution induces an excess of zeros compared to a Poisson distribution.

The issue of choosing the appropriate likelihood is important to avoid overfitting (see

Electronic Supplementary Materials). Overfitting is capitalizing on chance, and can happen

when a statistical model is learning noise from a peculiar dataset rather than a meaningful

signal that may be found in independent data (Babyak 2004). Overfitting can result in

misleading inferences.

Model building

Let yijkt denotes the ith datum corresponding the number of stranded carcasses to wash

ashore during ten of days of month j and year t on the coastline of the kth county. Month

and year effects were always included in the variance components models we built. Month

effects (aj) were assumed exchangeable and drawn from a normal distribution with

common variance r2
month. Likewise year effects (bt) were assumed exchangeable and

drawn from a normal distribution with common variance r2
year. To account for local
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conditions at the county level, county effects (hk) were assumed exchangeable and drawn

from a normal distribution with common variance r2
county.

Our simplest model accounting for the data structure is a cross-classified random

intercept model (Browne et al. 2007), with month, year and county modelled as random

effects. We were interested in assessing any temporal trend in the data. This trend may be

slightly different for each county because of local factors not explicitly accounted for in the

model. We thus included a county-level random slope, that is we modelled slope param-

eters as exchangeable. This assumption is important: it is known a priori that ‘‘Les Lan-

des’’ county differs from all the others owing to its institutionalized monitoring of beaches,

and constant detection probability, since the 1990s. Violation of the exchangeability

assumption of counties would betray non-constant detection probabilities in the other

counties. The different parametric models we entertained are summarized in Table 1.

M1 may be viewed as a default model:

yijkt�PðCoastk � kjktÞ ð1Þ

where the mean number (per 10 days and per unit of littoral length) of stranded carcasses in

month j of year t found in county k is:

logðkjktÞ ¼ hk;1 þ hk;2 � t þ aj þ bt ð2Þ

M2 expands M1 to account for an excess of zeros. The likelihood for the data is a mixture of a

degenerate mass at zero and a Poisson distribution. The model for the mixing proportion is

also a cross-classified random intercept model as described above. M2 has approximately

twice as many parameters as M1. M3 is a generalization of M1 and includes an overdispersion

parameter common across all years. M4 further generalizes M3: the overdispersion param-

eters are year-specific. M5 is an elaboration of M4 described below (see Sect. 2.6). Models

M1�2 assumed a Poisson likelihood for the data, while models M3�5 assumed a Negative

Binomial distribution. In all models, a logarithmic link function was used. In zero-inflated

models, the mixing proportion was modelled with a logit link.

Structuring overdispersion

Overdispersion is usually treated as a nuisance parameter, or a parameter not of primary

interest itself, but that must be taken into account for correct inferences. Yet, overdis-

persion may capture interesting information (Zheng et al. 2006). Our large dataset enables

us to estimate a year-specific overdispersion parameter (Model M4, see Tables 1 and 2). In

M4, overdispersion parameters are unstructured: we can obtain a time-series of overdis-

persion parameters over the study period. The statistical problem becomes to identify

’surprising’ points. Fúquene et al. (2014) proposed a method to identify outliers and

structural breaks in time-series. Let jt ¼
1

overdispersiont � 1
, so that jt [ 0. The jt [ 1 are

modelled with a random walk, on a logarithmic scale to ensure positive values:

for t� 1; logðjtþ1Þ ¼
logðjtÞ þ et

logðj1Þ þ
Pt

i¼1

ei

8
<

:
ð3Þ

The next value of a given logðjtþ1Þ is the previous value logðjtÞ plus a small deviation et.

Large deviations in magnitude may betray outliers. Fúquene et al. (2014) proposed to
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assume a heavy-tailed distribution, the Student t, for the et. The Student t distribution can

be represented as a scale mixture of normal (Gaussian) distributions (Andrews and Mal-

lows 1974): let zt be a random variable with a normal distribution, zt �Nð0;reÞ; and xt

an independent, positive, random variable. The random variable et ¼
zt
ffiffiffiffiffi
xt
p is a scale

mixture of normals. The conditional distribution of et given xt is Nð0; re
ffiffiffiffiffi
xt
p Þ. If

xt �Gðm
2
; m

2
Þ, the marginal distribution of et is Student t with m degree of freedom. This

representation of the Student t as a mixture of normals with different variances is useful:

the parameter xt has mean 1, the conditional distribution of et is normal with scale re.

When xt\1;
1
ffiffiffiffiffi
xt
p [ 1 allows for a greater variance than usual: the deviation et may have

a larger than usual magnitude. Thus a value of xt\1 will betray an outlier in the time-

series. The parameter m for degrees of freedom controls tail-heaviness (or how far the tail

extends from the mean value): for large values of m (m� 30), the Student t distribution is

similar to a normal distribution, while small values of m authorized outliers. We fixed m ¼ 4

as in Fúquene et al. (2014). Fúquene et al. (2014) further proposed a weakly-informative

Beta2 prior for the scale parameter re. We embedded Eq. 3 in model M4 (Table 1) to

detect outliers in the time-series of overdispersion coefficients. This model is labeled M5

(Table 1).

Confounding variables

A confounder is a variable known to be causally related to the response variable, and

whose omission in an analysis would generate a spurious relationship between the latter

and a third variable of interest. We distinguished between confounding and lurking vari-

ables which are respectively known and unknown to the modeller. Known confounders in

our case are (1) demographic evolution at the county level, (2) household internet access

and (3) law enforcement. The more populous a county, the more likely a stranded carcasses

may be reported. A 1988 law enforced mandatory reporting of cetacean strandings to

Observatoire PELAGIS and RNE by town and village administrations. The passing of this

law may have triggered an increase in reporting rates from local authorities. In 1998,

Observatoire PELAGIS set up an internet site with information on whom to contact and

what to do after the discovery of a stranded animal. Reporting rates from citizens may

consequently have increased with household internet access. Upon selecting a model with

an appropriate likelihood, we included these variables in Eq. 2:

logðkjktÞ ¼ hk;1 þ hk;2 � t þ hk;3 � lawt þ hk;4 � internett þ hk;5 � pop sizek;t þ aj þ bt

ð4Þ

where lawt ¼ 0 if t\1989 and 1 otherwise; internett denotes the percent of household with

internet access from 1998 onwards; and pop sizek;t is the population size of county k in

year t (see Sect. 2.2). Positive effects of all three covariates are expected if they are true

confounders, in which case we also expect the regression coefficient for time t to attenuate

or zero-out. Finally, we also compared the fit (via the EarthMover distance, see Sect. 2.8)

of a model in which the parameters hk;2, that is the regression coefficients for time, are set

to zero in Eq. 4 to the fit of our parametric model M4 (Table 1).
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Model checking, selection and testing

For each model, we used 3,000 draws from the posterior to predict each datum, and

computed the average histogram of predictions (‘‘posterior predictive checks’’, Gelman

et al. 1996). This histogram was compared to the histogram of observed data, and model fit

was visually assessed (see Fig. 3 in Minami et al. 2007 for a similar exercise). To

numerically quantify model fit, we used the EarthMover distance which has an intuitive

interpretation for the comparison of two histograms: each histogram may be viewed a pile

of dirt and the EarthMover distance reflects the amount of dirt times the distance needed to

turn one pile into the other. Each datum is like a sand grain, and the aim is to quantify how

many sand grains and how far do we need to move them to transform the histogram of

predictions into the empirical histogram of observed values. For inference, we selected the

model with the smallest EarthMover distance, that is the model which was able to generate

a histogram of predictions the most similar to observations.

Model fitting and priors

We favored a Bayesian framework. Bayesian estimation of random effects with a small

number of levels (12 months, eight counties) is adequate (Stegmueller 2013). We used

STAN (Stan Development Team 2013) called from R (R Development Core Team 2013)

with the package rstan (http://mc-stan.org/). Weakly informative priors were used

(Gelman 2006; Gelman et al. 2008). For variance parameters, we used a half-Cauchy prior:

r�Cþð0; 1Þ. For intercept parameters, we used a Student t: intercept�Sð0; 10; 7Þ. For

slope parameters, we used a Student t: slope�Sð0; 2:5; 7Þ. For overdispersion parameters

in models M3� 4, we used uniform priors: overdispersion�Uð1; 100Þ. Three chains were

initialized with different starting values. After appropriate burn-in (1,000 iterations) and

thinning of the chains (1 value every two iterations stored), convergence was assessed

using the Gelman-Rubin convergence diagnostic (Cowles and Carlin 1996). Unless stated

otherwise, posterior means are reported with 95 % Highest Probability Density intervals

(2:5%Mean97:5%) (Louis and Zeger 2009). Inferences are based on a posterior sample of

3,000 iterations. Covariates were standardized following (Gelman 2008). STAN and R
codes are available as supplementary materials.

Results

The mean number of stranded small-sized delphinids per 10 days over the study period was

EðyobsÞ ¼ 1 and the variance was VðyobsÞ ¼ 34. Seventy-three percent (73 %) of the data

were zeros. All models converged (r̂\1:1). Models with a Poisson likelihood did not fit

the data well: these models failed to predict enough zeros and predicted too many

observations between 1 and 10 strandings (Fig. 2a). Changing the likelihood for a Zero-

Inflated Poisson fixed the problem for the excess zeros, at the cost of twice as many

parameters; but the models still overpredicted frequencies of strandings of 1–10 individuals

(Fig. 2b). Using a Negative Binomial likelihood however resulted in a more acceptable fit

(Fig. 2c, d). This ranking is similar to that of Minami et al. (2007) with shark bycatch data.

Poisson and Zero-Inflated Poisson models were unable to predict events of more than 50

stranded dead dolphins. Negative binomial models were able to predict events of up to 80

stranded dead dolphins. No models could satisfactorily take into account the handfull of
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extreme events: five events of [ 100 stranded carcasses, including one with 349 animals.

Model fit is numerically summarized in Table 2. The best model was M4: a Negative

Binomial likelihood provided an aquedate fit to these data. The large sample size of our

M1
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ts
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6951
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Fig. 2 Parametric model fit. After model fitting, the posterior distribution of estimated parameters was used
to generate replications of the data. For each replicate, the empirical histogram of predictions was computed.
The mean predicted histogram were finally compared to the target histogram of observed data to assess
whether estimated parameters were able to predict similar data sets to the one the model was calibrated with.
Both x- and y-axes are on a square-root scale for ease-of-read purposes. Histograms are truncated at 100
(only five events, among 9,504, of more than 100 stranded carcasses over 10 days during the study period)
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data allowed us to estimate a year specific overdispersion parameter, which also slightly

improved model fit (Table 2). Model fit at the county level was also adequate (Fig. 3).

Figure 4a shows the ranking of each factor (month, year or county) in relative impor-

tance: monthly variation were the most pronounced in magnitude, followed by county-

level variations, and lastly by year-level variations. These results are in line with those of

Peltier et al. (2014) who used a different modelling approach with a subset of the data we

used. Estimated parameters can be interpreted as multiplicative factors (Fig. 4b, c): the

number of reported stranded carcasses of small delphinids increased 5-fold in February

compared to an average month like May or December, or a 10-fold increase compared to a
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summer month like July or August (Fig. 4b). Strandings were less frequent during the

summer and autumn month but increased dramatically during winter and spring months

(Fig. 4b, Peltier et al. 2012). Yearly variations were present but less pronounced, except for

a spike in the late 1980s. This spike happened the same year a law for mandatory reporting

of stranded animals was enforced.

Between 1980 and 2012, the mean number of strandings increased 2:37:012:3 fold over

the Bay of Biscay coastal areas (Fig. 5i). This overall trend did not mask county-level

peculiarities: small delphinid strandings increased in all the 8 French counties bordering

the Atlantic Ocean (Fig. 5a–h). Using M1, a model that did not fit the data (see Table 2),

would have resulted in different inferences regarding trends (see Supplementary Fig. S1).

The model we selected included overdispersion parameters (Fig. 6). Overdispersion, that is

a variance inflating factor relative to a Poisson distribution, decreased over the 33 studied

years (Fig. 6a). We further applied the method described in Fúquene et al. (2014) to

identify structural breaks in this time-series (Fig. 6b, c). The years 1992 and 1998 were

outliers, both because overdispersion decreased sharply compared to the rest of the series.

Discussion

We analyzed our data at the county level to capitalize on known differences between

counties. In particular, monitoring has been institutionalized since 1989 in ‘‘Les Landes’’

county. Local permanent staff is in charge of monitoring and cleaning the beaches that

borders the Bay of Biscay for aesthetic reasons linked to tourism. We can reasonably

expect reporting rates of stranded cetaceans to have remained fairly constant since the

1990s there. Yet, the overall shape of the trend in ‘‘Les Landes’’ county does not differ

from the other counties (Figs. 5, 7). ‘‘Les Landes’’ county has an overall higher number of
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strandings (Fig. 7). This results from a favorable substrate and geography, 105 km of

gentle-sloped sand beaches, which makes it a popular domestic touristic destination; and

the absence of a major estuary. ‘‘Gironde’’, ‘‘Charente Maritime’’, and ‘‘Loire-Atlantique’’

counties take their name from large rivers that flow into the Bay of Biscay. ‘‘Pyrénées

Atlantiques’’, ‘‘Morbihan’’ and ‘‘Finistère’’ counties have rocky and cliffy seashores, which

lower the probability that a cetacean will strand and be detected. However, the estimated

slope for ‘‘Les Landes’’ counties was comparable to that of two other counties (‘‘Vendée’’

and ‘‘Pyrénées Atlantiques’’), which vindicated the exchangeability assumption. By ana-

lyzing our data at the county level, we were interested in comparing ‘‘Les Landes’’ to the

other counties, and in particular to the ‘‘Gironde’’ county with which it shares many

features (same substrate, tourism, geographical proximity). These two counties have

similar trends over the study period, which further suggests that detection probability is not

sufficient to explain away the observed increase in stranding numbers.

Potential confounders

The number of stranded carcasses is the result of many underlying processes (Peltier et al.

2012): a change in any component may trigger a trend while other components remain

unchanged. The observational nature of stranding data limits the scope for causal infer-

ence. In particular, detection probability of stranded carcasses is an obvious confounder.

To account for this, we incorporated several confounders in our final model (Table 3). In

the final model with no covariate but ‘time’, the slope coefficient was estimated at

0:661:442:23. This coefficient decreased to �0:230:962:24 when confounders were included,

suggesting that the increasing trend may partly result from an increase in detection.

However, the sign of the coefficients for household internet access and county population

size have the wrong sign (Table 3). For the latter, the negative sign implied that more

populous county had fewer reported strandings, which does not make sense if detection

probability is related to the number of inhabitants; unless this is also correlated with other

cultural changes by which the lay public would pay less attention to natural events. The
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negative sign of the regression coefficient for household internet access is likewise sur-

prising. In the era of omnipresent new technologies, it is paradoxical that a greater access

to internet access should result in less reporting assuming that outdoor recreation habits of

citizens have not changed. How can we explained the negative regression coefficient then?

Household internet access is strongly correlated with ‘time’ over the study period, as can

be seen from the large negative correlation between the regression coefficients for these
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Fig. 7 Estimated county-level intercept (hk;1) and slope (hk;2) from model M4. The x-axis represents the

county-specific intercept, and the y-axis the county-specific slope (for ‘time’). ‘‘Les Landes’’ county has a
larger intercept, that is a higher number of strandings than any other other county. Its slope coefficient for
‘time’ is however comparable to other counties. The black dot symbolizes the grand mean for the Bay of
Biscay

Table 1 Parametric models: five models of varying complexity were considered; see Sect. 2.5

Name Likelihood Mean function Overdispersion

M1 Poisson logðkjktÞ ¼ hk;1 þ hk;2 � t þ aj þ bt 1

M2 Zero-Inflated
Poisson

kjkt ¼ pjkt � 0þ 1

ð1� pjktÞ � expðhk;1 þ hk;2 � t þ aj;1 þ bt;1Þ
where pjkt ¼ logit�1ðhk;3 þ aj;2 þ bt;2Þ

M3 Negative Binomial logðkjktÞ ¼ hk;1 þ hk;2 � t þ aj þ bt overdispersion

M4 Negative Binomial logðkjktÞ ¼ hk;1 þ hk;2 � t þ aj þ bt overdispersiont

M5 Negative Binomial logðkjktÞ ¼ hk;1 þ hk;2 � t þ aj þ bt overdispersiont ¼ 1þ 1

jt

j1 [ 0

for t� 1,
logðjtþ1Þ ¼ logðjtÞ þ et
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two covariates (Table 3): any increase in the regression coefficient for ‘time’ goes hand in

hand with a similar decrease in the regression coefficient for household internet access.

One solution to resolve this collinearity problem is to delete one of the covariates. When

the regression coefficient for time was set to 0 in Eq. 4, model fit was slightly worse

(EarthMover distance = 0.208 versus 0.198 for a model with just ‘time’). In this case, the

sign of the regression coefficient for household internet access became positive

(0:060:751:57), that of law enforcement remained positive (0:691:131:59) and that of popula-

tion size remained negative (�2:32 � 0:840:44).

Law enforcement in 1988 probably had a causal impact and increased detection

probability: we observed a positive regression coefficient for this indicator variable. We

detected a structural break in the time-series of overdispersion parameters corresponding to

the year 1992 (Fig. 6c): overdispersion decreased in that year. Passing the law for man-

datory reporting of stranded carcasses by local French administrations triggered an increase

in the mean number of reported stranding (Fig. 4c), but compliance may have been partial

for the first couples of years after law enforcement. A period of partial compliance could

reflect the time needed for local authorities to adapt and implement routine procedures

when a stranded carcass is discovered. By 1992 however, full compliance was probably

achieved, which may account for the observed decrease in variability. Another, non-

mutually exclusive factor, may be a greater public awareness of dolphin strandings fol-

lowing the Mediterranean morbilivirus epizootics of the early 1990s (Aguilar and Raga

1993), which was prominently covered by both local and national media.

Evidence for an effect of household internet access on reporting a stranded animal to

Observatoire PELAGIS is less clear. During the early 1990s, less than 5 % of French

household had an internet access and Observatoire PELAGIS had no website with instruc-

tions to follow in case of discovery of a stranded carcass. Yet, the overall and local trends were

Table 2 Model selection with the EarthMover distance: the model which was able to make predictions
most similar to observed data was selected

Model EarthMover distance

M1 0.443

M2 0.384

M3 0.203

M4 0:198

The most richly parametrized model, M2, was not the one that provided the best fit because the likelihood
was inappropriate for the small delphinid stranding data in the Bay of Biscay. Models with a Negative
Binomial likelihood were clearly superior

Table 3 Estimating the effect of potential confounders: estimated regression coefficients of potential
confounders affecting detection probability are reported on the diagonal

Covariate Time Law internet Pop size

time -0.23 0.96 2.24 -0.80 -0.86 -0.10

law -0.14 0.64 1.36 0.63 0.01

internet -2.04 -0.40 1.10 0.03

pop size -2.37 -0.92 0.37

Off diagonal figures correspond to empirical posterior correlations between parameters, and indicate col-
linearity between ‘time’ and household internet access
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all one of increase during the 1990s (Fig. 5). If internet access had a causal impact of reporting

rate, it would manifest itself from the 2000s onwards, but this period corresponds to reduced

rate of increase compared to the preceding decade. The internet covariate is 0 or very small for

most of the 1990s. It thus appears unlikely that access to new technologies had an effect on

detection in the 1990s which was nevertheless a period of increase in strandings. This can

explain why the fit of model without ‘time’ is slighly worse than one with ‘time’. Finally,

although population size on the French Atlantic coast increased over the study period, the sign

of the estimated coefficient for this confounding variable is not coherent with a causal effect

on detection probability. This in turn suggests a preponderant role of local administrations

and their staff (e.g. earthmovers) in reporting stranded carcasses, over that of the lay public.

Public awareness of cetacean conservation issues has likely increased over the study

period. Were the lay public the only channel through which strandings were reported to

Observatoire PELAGIS, population size would have increased reporting rates in all

counties but ‘‘Les Landes’’. The reason why this does not show up in the data is probably

linked to the effectiveness of the 1988 law. Most reportings are done through the ‘‘official

channel’’ of municipalities calling directly Observatoire PELAGIS. Although Observatoire

PELAGIS does get more calls from the lay public, these calls are largely redundant with

those of municipal staff. This might be the reason why reporting rates may have remained

more or less constant since the 1990s. Population size may also be too crude a proxy: more

relevant information could be changes in leisure activities, either rural or urban. The

former is more in favor of higher reporting rates than the latter, yet the French population is

currently more urban than ever before.

Causal inference with observational data is inherently more difficult and tentative than

with experimental data (Goldthrope 2001): without experimental control, an unknown

confounder may still be lurking. Here, we focused on whether observed trends could have

arisen from variations in reporting rates alone. We concluded that this may have been the

case in the 1980s, but unlikely afterwards.

What happened in the 1990s?

A major threat to marine mammal populations worldwide is bycatch by fisheries targeting

commercial fish species (Morizur et al. 1999; DeMaster et al. 2001; ICES 2005; Read et al.

2006; Moore and Read 2008; Reeves et al. 2013; Thompson et al. 2013). The Bay of

Biscay corresponds to ICES Ecoregion G, subdivisions VIIIa and VIIIb. In the 1980s, the

number of pair trawlers operating in the whole ICES Ecoregion G Subdivision VIII

increased from less than 50 boats to more than 150 in the early 1990s and down to 100 in

the early 2000s (Villalobos Hortiz 2008). The number of purse seiners remained more or

less the same (between �25 and �40) during the 1990s but doubled in the early 2000s

(Villalobos Hortiz 2008). Dolphin bycatch by pair trawlers or purse seiners is documented

(Read et al. 2006; de Boer et al. 2012; Thompson et al. 2013), and a represent a serious

threat to common dolphin population viability on the Bay of Biscay (Mannocci et al.

2012). In particular, common dolphins are at risk with the sea bass trawl fishery operating

the Bay of Biscay because of the dietary overlap between sea bass (Dicentrarchus labrax)

and common dolphins (Spitz et al. 2013). Because of high energy requirements (Spitz et al.

2012), small delphinids target preferentially prey of high energy contents such as European

anchovies (Engraulis encrasicolus) and sardines (Sardina pilchardus) (Meynier et al.

2008; Spitz and Jouma’a 2013), on which European sea bass also feeds. A byproduct of

dietary overlap may be increased interactions between dolphins and commercial pair

trawlers, and eventually dolphin bycatch (Mannocci et al. 2012; Spitz et al. 2013).
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We acknowledge that inferring the causes behind the trend observed in our data is a

difficult endeavour, and ruling out potential confounders (as in Jepson et al. 2013 or Wright

et al. 2013) is certainly a more realistic goal than finding the unique causal mechanism behind

the observed pattern. Yet, there is ample independent data on the threats that bycatch poses to

marine mammals (Morizur et al. 1999; DeMaster et al. 2001; ICES 2005; Read et al. 2006;

Moore and Read 2008; Reeves et al. 2013; Thompson et al. 2013) to argue for at least a partial

role of the later in the average 7-fold increase in stranding numbers of small delphinids we

observed in the Bay of Biscay over 30 years (Fig. 5). Excluding data from the 1980s, the

average increase over the whole Bay of Biscay is 2:03:85:7-fold. Using an explicit physical

drift model to account for stranding probabilities of dead dolphins, Peltier et al. (2014)

demonstrated that the continental shelf of the Bay of Biscay is a mortality hotspot for common

dolphins. Peltier et al. (2014) further estimated that a 2-fold increase in stranded common

dolphins between winter and summer was due to drifting conditions alone. Here, we esti-

mated a 10-fold increase (Fig. 4b), that is a 5-fold increased compared to what would be

expected with seasonal drift conditions alone, which is again similar to what Peltier et al.

(2014) found using a different approach that accounts explicitly for drift.

We discussed earlier a structural break we identified in 1992, but set aside the other one

identified in 1998. Close inspection of Fig. 6 and data suggest that the outlier is rather the

year 1997, in which overdispersion increased sharply compared to the surrounding years.

This increase was due to the occurrence of six extreme events of more than 50 strandings

per 10 days in mid-February 1997 in five counties. Examination of individual cases by

querying our database revealed that a majority of the animals showed lesions either

characteristic or suggestive of interactions with fishing gear (Kuiken 1994). Although our

selected model did not cope well with predicting extreme stranding events, in this case the

mean trend was unaffected (Fig. 5), and the overdispersion parameter acted as a buffer

against these outlying observations. This, in turn, shed light on why a Negative Binomial

likelihood is adequate for small delphinids data: multiple stranding events can stem from

bycatch of a large number of animals that were interacting with a commercial fishery. The

stranding events are no longer independent, but are correlated through a common cause of

accidental death. Our study thus suggests using overdispersion as an indicator of years of

unusual mortality. Yet, the precise identification of underlying causes behind unusual

events is not something our models can elucidate with certainty, and ancillary information

will be needed. In other words, overdispersion as an indicator has a low specificity, but this

is unsurprising given the phenomenological nature of the model. In fact, the year 1997 is

also an outlier in that several winter storms resulted in favorable drift conditions, which

may partly explained the surge in observed strandings. However, Peltier et al. (2014) also

found that 1997 was the first year with anomalously high strandings even after accounting

for drift conditions. In our case, in spite of drift being a potential confounder, it does not

alter how a large proportion of stranded small delphinids in the beginning of 1997 showed

lesions characteristic of bycatch. The merit of model M5 is to allow robust (with respect to

noise) inference on the mean trend, to provide a parameter that can be linked to a common

cause of mortality (bycatch, epizootics), and to suggest in a principled way what are

surprising observations in the time-series of these parameters.

Conclusion

We have provided an in-depth analysis and description of small delphinid strandings in the

Bay of Biscay, capitalizing on county-level specificities to critically assess the consistency
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and quality of data collected by the French stranding network RNE since 1980. With no

claims of novelty (for example, see Minami et al. 2007), we suggested to use variance

component models to take into account some peculiarities of count data, and proposed

biological interpretation of parameters of interest. A good fit with the observed data was

obtained with relatively simple models including seasonal and yearly variations and a trend

over time. The model allowed to rank sources of variations in importance (Fig. 4a), and to

reduce a large data set of nearly 10,000 points to less than 100 interpretable parameters.

The number of stranded small delphinids have increased seven-fold since the 1980s. We

discussed causal inference with observational data and investigated potential confounders

related to detection of stranded carcasses. We inferred that the French stranding records

appear most homogeneous in effort since the 1990s, with the corollary that the observed

increased in strandings in due to other factors than an increase in reporting rates.

Although we adopted a narrow focus on the Bay of Biscay and RNE in order to provide

a documented, context specific, analysis of observational data, we feel that our models may

be of interest to other national stranding networks for monitoring purposes. Moreover, the

graphical representation of results is relatively new and illuminating for applied research

(Gelman 2005; Hector et al. 2011). Recent research also suggests that traditional reporting

of results by means of F-statistics may create an illusion of predictability, even for experts

(Soyer and Hogarth 2012).

We discussed the choice of an appropriate likelihood for the data, which seems an

overlooked issue in the marine mammal stranding literature, and found the Negative

Binomial useful and interpretable in the context of small delphinid strandings. This need

not be the case with other taxa, especially species which are less abundant (baleen whales

for example), but we suggest it should be tested along with the more common Poisson

model to avoid overfitting (see Online Appendix). Finally, we did not consider modelling

drift explicitly as in Peltier et al. 2013, 2014. The latter is to be preferred since any signal

can be more meaningfully interpreted as freed from the confounding influence of drift.

However, our aims here were to analyze strandings data in a general setting (see Peltier and

Ridoux 2013 for setting the scene of stranding data analyses with a drift model). A future

extension is to merge this work with explicit drift modelling (Peltier et al. 2013, 2014) for

assessing and monitoring Good Environmental Status with respect to marine mammals

within the EU Marine Strategy Framework Directive.
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Sánchez-Vizzcaı́no J (2013) Unusual striped dolphin mass Momrtality episode related to Cetacean
morbilivirus in the Spanish Mediterranean Sea. BMC Vet Res 9:106. doi:10.1186/1746-6148-9-106.
http://www.biomedcentral.com/1746-6148/9/106

Soyer E, Hogarth R (2012) The illusion of predictability: how regression statistics mislead experts. Int J
Forecast 28:695–711. doi:10.1016/J.ijforecast.2012.02.002

Spitz J, Jouma’a J (2013) Variability in energy density of forage fishes from the Bay of Biscay (North-East
Atlantic Ocean): reliability of functional grouping based on prey quality. J Fish Biol 82:2147–2152.
doi:10.1111/jfb.12142

Spitz J, Trites A, Becquet V, Brind’Amour A, Cherel Y, Galois R, Ridoux V (2012) Cost of living dictates
what whales, dolphins and porpoises eat: the importance of prey quality on predator foraging strate-
gies. PLoS One 7(11):e50,096. doi:10.1371/journal.pone.0050096

Spitz J, Chouvelon T, Cardinaud M, Kostecki C, Lorance P (2013) Prey preferences of adult sea bass
Dicentrarchus labrax in the Northeastern Atlantic: implications for bycatch of common dolphin
Delphinus delphis. ICES J Mar Sci 70(2):452–461. doi:10.1093/icesjms/fss200

Stan Development Team (2013) Stan: A c?? library for probability and sampling version 1.3. http://mc-
stan.org/

Stegmueller D (2013) How many countries for multilevel modeling? A comparison of frequentist and
Bayesian approaches. Am J Polit Assoc 57:748–791. doi:10.1111/ajps.12001

Taylor B, Martinez M, Gerrodette T, Barlow J, Hrovat Y (2007) Lessons from monitoring trends in
abundance of marine mammals. Mar Mammal Sci 23:157–175. doi:10.1111/J;1748-7692.2006.00092.
x

Thompson F, Abraham E, Berkenbusch K (2013) Common dolphin (Delphinus delphis) bycatch in New
Zealand commercial trawl fisheries. PLoS One 8(e64):438. doi:10.1371/journal.pone.0064438

Thompson K, Millar C, Baker C, Dalebout M, Steel D, van Helden A, Constantine R (2012) A novel
conservation approach provides insights into the management of rare Cetaceans. Biol Conserv
157:331–340. doi:10.1016/j.biocon.2012.07.017
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