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The growing public interest in biodiversity projects provides great opportunities to monitor biodiversity across
broad geographic areas at low cost. Such volunteer-based surveys should however need careful consideration
during statistical analysis since the presence of residual spatial autocorrelation and over-heterogeneity can
lead to misguided inference. The recent development of new statistical tools allows accounting for these prob-
lems in all steps of the statistical analysis. Especially, the spatial leave-one-out method allows accounting for spa-
tial autocorrelation in the variable selection step while the R-INLA tool box provides a useful way to estimate
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Count data complex spatial hierarchical models in a minimum computation time. We applied such tools on a dataset collect-
Overdispersion ed by volunteers between 2000 and 2013 giving the relative abundance of 12 raptors breeding in France. We then
Raptors estimated their spatial distribution, population sizes and trends with a particular emphasis in quantifying the un-

Spatial autocorrelation
Species distribution
Uncertainty

certainty of our estimations. Our results suggest that broad-scale volunteer-based surveys offer enhanced oppor-
tunities for monitoring widespread species but may fail in giving accurate information for less common species,
especially when sampling is too scattered. Providing uncertainty of estimations helps in identifying species and
areas from which estimations are the more reliable and thus gives more powerful information for conservation

practitioners.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The ‘2010 biodiversity target’ aiming at a significant reduction in the
rate of biodiversity loss by 2010 has not been achieved (Butchart et al.,
2010; Convention on Biological Diversity Secretariat, 2010). This objec-
tive has thus been renewed by 2020, with 20 important biodiversity tar-
gets being proposed to reach this task (Mace et al., 2010; Perrings et al.,
2010, 2011; Rands et al., 2010). Evaluating whether these targets are
fulfilled relies on the existence of valid indicators reflecting, as accurate-
ly as possible, the exact global biodiversity condition (Butchart et al.,
2010; Jones et al., 2011). While existing indicators were shown to be ef-
ficient, they still should be improved by ‘collecting data in a way that re-
duce existing bias’ (Jones et al., 2011). A critical way to improve the
reliability of global biodiversity indicators is to collect data at broader
spatial extent, which is the actual scale for both population functioning
and policy decision making (Jones, 2011; Jones et al., 2011; Pereira and
Cooper, 2006). However broad-scale species monitoring is very costly,
while funds to manage biodiversity are very limited, highlighting the
need to maximize the cost-effectiveness of monitoring programs.

A promising solution to reduce the cost in collecting biodiversity
data arouse recently with the growing public interest in biodiversity

* Corresponding author. Tel.: +33 549 09 96 13; fax: +33 549 09 65 26.
E-mail addresses: lerest.k@gmail.com (K. Le Rest), pinaud@cebc.cnrs.fr (D. Pinaud),
breta@cebc.cnrs.fr (V. Bretagnolle).

http://dx.doi.org/10.1016/j.ecoinf.2015.08.007
1574-9541/© 2015 Elsevier B.V. All rights reserved.

projects (Silvertown, 2009). The participation of hundreds if not thou-
sands of volunteers in such projects has rapidly grown over the past de-
cade (see Dickinson et al., 2010). Concomitant with the citizen science
wave, new communication tools such as internet and the free availability
of remote sensing databases (Kerr and Ostrovsky, 2003) have marked the
emergence of new quantitative approaches able to address questions on
the species distribution across very broad geographic areas (Dickinson
et al,, 2010). However, broad-scale data involving volunteers also raised
new concerns in regard to the statistical analyses to be used since such
data may have potentially higher heterogeneity than expected by
conventional models (e.g., overdispersion, see Hinde and Demétrio,
1998) and in addition will present strong spatial autocorrelation (Beale
et al., 2010; Dickinson et al., 2010; Hothorn et al,, 2011). These two issues
may lead to overconfident statistical inference if not properly
treated. In this paper, we argue that combining broad-scale
volunteer-based survey and appropriate statistical analyses can be
highly valuable to estimate species population parameters, such as
distribution, abundance and trends, at spatial scales that have not
been addressed so far.

As a case study we analysed a national volunteer-based survey on
the abundance of 12 raptors breeding in France (about 550,000 km?)
between 2000 and 2013. We additionally used free remote sensing cli-
matic and habitat (land cover) datasets to link observed abundance
with environmental variables suspected to directly or indirectly influ-
ence their abundance (see Le Rest et al., 2013). A particular emphasis
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concerns the statistical analyses, since they should account for both
overdispersion and spatial autocorrelation at each step of the modelling
framework, i.e., from variable selection to model predictions. The
spatial-leave-one-out (SLOO, Le Rest et al., 2014) is used for variable
selection, which allows choosing relevant variables while avoiding
undesirable effect of spatial autocorrelation. Variables selected were
then used in a spatially explicit model with a negative binomial distribu-
tion, i.e., a model accounting for both spatial autocorrelation and
overdispersion. The spatial random effect will correct for the parameter
estimation and improve spatial predictions by interpolating at
unsampled locations.

2. Materials and methods
2.1. Study species

Raptors are predators belonging principally to families Accipitridae
and Falconidae. Raptors have long been used as biological indicators in
terrestrial ecosystems (see Newton, 1979; Sergio et al., 2005, 2006,
2008). There are 24 breeding species of diurnal raptors in France
(Thiollay and Bretagnolle, 2004), several of them being present in tiny
numbers either because their breeding habitat is restricted, or because
their breeding distribution is very limited. We focus here on the 12
most abundant species of France, which are (in decreasing order of
abundance) the Common Buzzard Buteo buteo, the Common Kestrel
Falco tinnunculus, the Eurasian Sparrowhawk Accipiter nisus, the Black
Kite Milvus migrans, the European Honey Buzzard Pernis apivorus, the
Hen Harrier Circus cyaneus, the Eurasian Hobby Falco subbuteo, the
Northern Goshawk Accipiter gentilis, the Montagu's Harrier Circus
pygargus, the Short-Toed Snake Eagle Circaetus gallicus, the Red Kite
Milvus milvus and the Marsh Harrier Circus aeruginosus.

2.2. Survey and datasets

The dataset comes from a national survey aiming at monitoring diur-
nal raptors breeding in the whole country of France. Field surveys were
carried out by volunteer ornithologists under the supervision of the
National NGO, Ligue pour la Protection des Oiseaux (LPO). The field pro-
tocol consists in counting the total number of breeding pairs of each rap-
tor species on 25 km? quadrats (5 x 5 km; see Thiollay and Bretagnolle,
2004 for details) during the whole breeding season. The survey began in
2000 by 3 years of intensive field work (1260 quadrat were surveyed
between 2000 and 2002) with the aim to obtain an accurate starting
point about the distribution and population size of raptors in France.
From then a reduced yearly monitoring program was set up to estimate
trends, based on a much lighter sampling effort (about 65 quadrats per
year but with high variations depending on the number of volunteers
motivated). Fig. 1 shows the quadrats sampled over the entire period.

Each quadrat was described using climatic (Hijmans et al., 2005,
Bioclim, www.worldclim.org/bioclim) and land cover (CLC: Corine
Land Cover, www.eea.europa.eu) remote sensing datasets. The climatic
dataset consisted in 19 variables measured between 1960 and 1990,
providing robust measures of climate at a resolution of approximately
1 km. This data allowed accounting for broad-scale variations of climate
over our study area (e.g., hot versus cold, wet versus dry areas), but the
true effect of climate on raptors could not be assessed properly due to
the time difference between the climate data and the survey. Not sur-
prisingly, high correlations occurred between climatic variables. A prin-
cipal component analysis (PCA) was performed on this dataset and
principal components were used as climatic variables (see also Le Rest
et al,, 2013). The label “ClimDim.x” was used to nominate the xst prin-
cipal component from the climate dataset. The land cover dataset had
44 variables depicting land use in 2000 on a 100 x 100 m cell resolution.
From these 44 classes, 10 habitat hyper-classes were built from a func-
tional (ecological) point of view for raptors (see Appendix A). The
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Fig. 1. Location of the 1924 quadrats surveyed between 2000 and 2013, the grey scale in-
dicates the number of time each quadrat has been surveyed during this period, from 1 in
light grey to 8 in black. The left frame indicates the total number of quadrat respectively
involved.

percentage of coverage per 25-km? quadrat was calculated for each of
these habitat hyper-classes.

2.3. Statistical modelling

Some calculated habitat variables showed highly skewed
distributions, which could impact the parameter estimation. A log-
transformation was thus done on these variables. A variable selection
step was then performed in order to identify the variables improving
significantly the prediction power. The spatial-leave-one-out method
(SLOO, Le Rest et al., 2014) was chosen in order to deal with spatial au-
tocorrelation. SLOO consists in performing leave-one-out cross-
validation while spatially autocorrelated observations between the val-
idation and the training sets are removed (see also Le Rest et al., 2013).
Linear terms were first selected through a step by step process and then
interactions as well as quadratic terms were involved. For this step, only
the first 4 years of data (2000-2003, 1265 quadrats) were used, which
reduced the impact of habitat changes between 2000 and 2013 in the
selection of variables. The variable selection process stopped when the
gain of SLOO log-Likelihood was less than one (which is equivalent to
choose a delta— AIC of 2) in order to avoid the selection of variables
not improving significantly the prediction power. The Short-Toed
Snake Eagle had a too huge range of residual spatial autocorrelation,
which prevented using SLOO in a usual way (range over % of the studied
area; see Le Rest et al., 2014). For this species we thus tested four thresh-
old distances (100, 150, 200 and 250 km) and only kept the jointly se-
lected variables, alleviating the effect of the threshold considered.

Selected variables were then used in a hierarchical model with a
distance-based spatially structured random effect (a spatial explicit hi-
erarchical model, see Beale et al., 2010; Saas and Gosselin, 2014). A
negative binomial distribution was assumed to account for the over-
heterogeneity present in the data (i.e., overdispersion, see Greene,
2008; Hinde and Demétrio, 1998). At this second step all data were
used (2000-2013) and a linear temporal effect (the year) was added
to the model in order to estimate the population trends. For the Red
Kite, one variable selected resulted in non-convergence of the model
when used in a spatial explicit framework. For this species, we have
thus restricted the variable selection step by removing this variable
from the candidate ones.

Spatial explicit models were computed by using R-INLA, which
allowed fast Bayesian inference using the integrated nested Laplace ap-
proximation (INLA, Rue et al., 2009). R-INLA proposes an easy way to
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compute continuous spatial processes by using the stochastic partial dif-
ferential equation (SPDE) method with a Matérn covariance matrix
(Lindgren et al., 2011). There is recent and flourishing number of papers
and tutorials about this method, making possible the estimation of com-
plex spatial models possible in a minimum computation time (Beguin
et al., 2012; Cameletti et al., 2013; Lindgren, 2013; Lindgren and Rue,
2015). Using R-INLA with SPDE required constructing a constrained re-
fined Delaunay triangulation. Since our data locations were rather regu-
larly spaced, we defined the triangulation based on our data locations
without refinements. For more details on this step, see the SPDE tutorial
(Krainski and Lindgren, unpublished).

For each raptor species, we estimated the spatial distribution, the
relative population size and the linear population trend between 2000
and 2013. The spatial distribution was obtained by predicting the rela-
tive number of pairs for the year 2000 over a grid of France (22,363
quadrats of 25 km?). R-INLA allowed predicting both the posterior
mean and its standard deviation (i.e., the standard error), which
allowed displaying both maps easily (see Krainski and Lindgren,
unpublished; Lindgren and Rue, 2015). The relative population size
was estimated by sampling 1000 times from the approximated posteri-
or distribution of the model and summing the predicted values for the
whole study area. This process allowed giving a 95% confidence interval
(2.5% and 97.5% quantiles). Linear trends resulted from the linear tem-
poral effect (year) estimation and were expressed in average population
growth rate per year.

3. Results
3.1. Spatial distribution

The predicted abundance maps (see abundance in Fig. 2) should not
be interpreted without their associate prediction errors (see se in Fig. 2).
The latter map actually reflects the precision of the predictions and is
thus as important as the predicted abundance (Rocchini et al., 2011).
Prediction error maps showed that the precision of the predictions
was rather heterogeneous in space. Errors were higher in high abun-
dance areas but this was expected from the type of data used since
mean and variance are linked in count data analysis. Moreover, the tri-
angulation used led to a slight increase of the predictions errors (outside
the triangulation nodes) but this effect was marginal and could only be
detected when the standard errors were very low in comparison to the
predicted abundance. More importantly, higher prediction errors oc-
curred in areas having less sampled habitats, e.g., water bodies, wet-
lands, and/or less sampled geographic space, e.g., study area bounds,
islands. For instance, predicted map for the Marsh Harrier (not shown
here), a species which mainly breeds in wetlands, showed very high

The Common Buzzard Buteo buteo
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standard errors in some areas, which outlined unreliable predictions
in these areas. A possible visualisation would be to combine the abun-
dance and the standard error maps in order to give more reliable infor-
mation, e.g., abundance maps hiding areas having too high prediction
errors, thus acknowledging for the fact that the exact abundance cannot
be known anywhere from our data.

3.2. Population size

Population sizes produced in Table 1 were not corrected for the de-
tection bias but could give an idea of the real population sizes for the
well detected species, e.g., Common Buzzard, Common Kestrel, Kites
and harriers. Relative population sizes were fairly precisely estimated,
though some species in low numbers presented less precise estimation.
For example, the Marsh Harrier had an upper bound of the 95% confi-
dence interval being about twice the lower bound.

3.3. Trends

Five raptor species showed positive trend between 2000 and 2013
(at the 0.05 level, see Fig. 3), the Common Buzzard, the Black Kite, the
Eurasian Hobby, the Short-Toed Snake Eagle and, although less preci-
sion, the Red Kite. Seven species showed non-significant linear trends,
indicating either stable population size or undetected trends. The Com-
mon Kestrel showed a near significant decline and the three harrier's
species showed non-significant decline. Apparently therefore, raptors
breeding in agricultural landscapes were declining whereas raptors
breeding in natural areas (e.g., forests) were stable or increasing.
Some species showed rather large confidence intervals preventing any
decision in regard to their apparent trends, unless trends were very
strong. Species concerned were those occupying restricted ranges in
France.

4. Discussion

The major problem to address when using volunteer-based surveys
is to account for the high heterogeneity amongst observer performances
(Dickinson et al., 2010). To overcome this issue, usually great care is
imposed on field protocols. The best solution would be to quantify the
observer detection effect, and then use it in the statistical analyses
(see Royle, 2004; Royle and Nichols, 2003). But at broad-scale, such in-
formation is often missing, either because protocols correcting for
observer detection are not yet developed when the survey begins
(e.g., in cases of long term monitoring) or because it involves
too much constraint for volunteers, at the risk of diminishing the
number of volunteers motivated in participating to the survey. The
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Fig. 2. Example of the predicted relative number of pairs (abundance, left: number of pairs/100 km?) and prediction errors (standard errors/se, right) for the Common Buzzard.
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Table 1
Relative number of pairs for 12 raptor species breeding in France (set for the year 2000).
The 2.5%, 50% and 97.5% quantiles are given.

Species 2.5% 50% 97.5%

Buteo buteo 160,038 166,765 174,526
Falco tinnunculus 103,626 107,702 112,170
Accipiter nisus 44,243 46,761 49,369
Milvus migrans 25,099 28,003 31,660
Pernis apivorus 19,606 21,207 23,162
Circus cyaneus 14,228 15,490 16,945
Falco subbuteo 11,064 12,062 13,214
Accipiter gentilis 8415 9391 10,477
Circus pygargus 5880 6863 8287
Circaetus gallicus 4005 4747 5541
Milvus milvus 3554 4349 5287
Circus aeruginosus 3229 4275 6452

heterogeneity involved by heterogeneous detection capacities actually
leads to two main problems. First, it leads to bias in abundance esti-
mates (the mean) with more likely an underestimation of the true num-
ber due to failure in detecting some individuals (Anderson, 2001, 2003).
Second, it leads to an inflated variance with the counts varying much
more than under homogeneous detection probability. Statistical models
accounting for overdispersion, such as the negative binomial distribu-
tion used here, allow correcting for the inflated variance (see Hinde
and Demétrio, 1998; Richards, 2008) but do not correct for the bias
problem. Our data thus did not allow addressing the estimation of
true abundance but rather a relative abundance, i.e., the abundance
that is detected on average by observers. Even if relative abundance
may sometimes be convenient for population monitoring (Engeman,
2003), it may not be suited however for monitoring rare species because
the true density or population size becomes the measure of interest, as
reflecting the risk of extinction (Courchamp et al., 1999).

The design of our survey, with few quadrats surveyed for long term
monitoring (less than 100 quadrats per year) limited the probability of
detecting population changes in the case of least common species. In-
deed, our results showed that species occupying a restricted range in
France (e.g., Marsh Harrier) had the highest uncertainty in population
sizes and trend estimations. Conversely, widespread species provided
more confident estimated population parameters. Common species
play a major role in ecosystem functioning and being able to provide in-
formation about their distribution, population sizes and trends can be
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Fig. 3. Population trends between 2000 and 2013 for 12 raptor species breeding in France.
Trends are presented as average population growth rate per year, e.g., 1.05 means that the
population size is multiplied by 1.05 each year (i.e., + 5% per year), thus increasing. Signif-
icant trends (positive in green) have their 95% confidence interval excluding 1.

highly valuable (Gaston, 2010; Gaston and Fuller, 2008). Such a strategy
may increase the efficiency of future conservation actions since it is
much easier to conserve population having high densities (Courchamp
etal, 1999). True abundance remained however difficult to assess with-
out detection correction, but this may not be much critical for common
species since they are far away from the extinction.

In the absence of detection measure, one could be sceptical in regard
to the validity of the estimated distributions and population trends.
Models used here assumed that the over-heterogeneity (and thus, de-
tection bias) is random in space and time, i.e., constant overdispersion.
Yet, we cannot rule out that volunteers may increase their performances
through time by improving field-experience over years, resulting in
wrong positive trends. The sampling scheme used here was built in
order to avoid this learning effect, i.e., quadrats were chosen randomly
each year (see also Jiguet, 2009) and were usually surveyed by several
observers. If a learning effect is expected, it is possible to account for it
a posteriori, e.g., by using an additional measure in the model indicating
the number of time the quadrat was surveyed or a measure of the over-
all time passed in.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.ecoinf.2015.08.007.
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