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Temperate ectotherms are expected to benefit from climate change (e.g., increased activity time), but the impacts
of climate warming during the winter have mostly been overlooked. Milder winters are expected to decrease
body condition upon emergence, and thus to affect crucial life-history traits, such as survival and reproduction.
Mild winter temperature could also trigger a state of chronic physiological stress due to inadequate thermal con-
ditions that preclude both dormancy and activity. We tested these hypotheses on a typical temperate ectother-
mic vertebrate, the aspic viper (Vipera aspis). We simulated different wintering conditions for three groups of

Iéfm(;rgsh;nge aspic vipers (cold: ~6 °C, mild: ~14 °C and no wintering: ~24 °C) during a one month long period. We found
Winter that mild wintering conditions induced a marked decrease in body condition, and provoked an alteration of
Temperature some hormonal mechanisms involved in emergence. Such effects are likely to bear ultimate consequences on re-
Corticosterone production, and thus population persistence. We emphasize that future studies should incorporate the critical,
Ectotherm albeit neglected, winter season when assessing the potential impacts of global changes on ectotherms.

Snake © 2015 Elsevier Inc. All rights reserved.
1. Introduction development, growth rates, reproduction, activity, maintenance costs,

Climate change is now clearly established and is predicted to accel-
erate in the next century (IPCC core writing team, 2014 ), while it is con-
sidered as one of the main driver of biodiversity loss (Sala et al., 2000;
Sinervo et al,, 2010; Bellard et al., 2012). Predictions regarding the
impact of global warming on biodiversity have become a central
theme in ecology (see Pereira et al., 2010 for a review) and one essential
prerequisite is to understand the proximate mechanisms by which spe-
cies will respond to environmental changes (Dillon et al., 2010; Pereira
etal, 2010; Huey et al., 2012; Seebacher and Franklin, 2012). Notably,
clarification of metabolic adaptations and physiological tolerance
are essential to better understand macroecological responses to climate
change such as shift in species distribution (Chown et al., 2003;
Bernardo and Spotila, 2006; Bernardo et al., 2007; Dillon et al., 2010).

Due to their direct dependency on environmental temperature,
ectotherms are expected to strongly respond to thermal constraints
mediated by climate change (Deutsch et al., 2008; Huey et al., 2012,
see Lillywhite, 2013 for a review). Most ectotherms lack the ability
to produce significant metabolic heat and their body temperature is
driven by ambient conditions. As a consequence, any change in environ-
mental temperature will affect most aspects of their life cycle through
body temperature changes (Angilletta, 2009). Accordingly, impacts
of global warming have been shown to influence rates of embryonic
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and survival rate (Chamaille-Jammes et al., 2006; Parmesan, 2007;
Portner and Knust, 2007; Sinervo et al., 2010; Neuheimer et al., 2011;
Bestion et al., 2015; Stahlschmidt et al., 2015). Ultimately, climate
warming is thought to induce effects on distribution and population
persistence (see Parmesan, 2006 for a review). Recent studies have
suggested that tropical ectotherms are particularly at risk through
increased maintenance costs, overheating and disproportionately
reduced activity times (Deutsch et al., 2008; Dillon et al., 2010); while
climate change should increase the potential activity time of temperate
ectotherms due to latitudinal gradient in thermal breadth and may even
enhance their fitness (Parmesan et al., 1999; Buckley et al., 2011, but see
Bestion et al., 2015).

Although the hypothesis that temperate ectothermic vertebrates are
expected to benefit from climate warming is supported by empirical
data (Chamaille-Jammes et al., 2006; Clarke and Zani, 2012; Huang
et al., 2013; Stahlschmidt et al., 2015, but see Bestion et al., 2015),
very few studies have focused on the impacts mediated by climate
change during the overlooked, yet critical, winter season (Zani, 2008;
Williams et al,, 2015). Winter is a key season for terrestrial ectothermic
vertebrates, as it may represent more than half of their time budget and
have long-lasting consequences on other life-history stages (Williams
et al., 2015). During this season, low temperatures impede normal
activity, cellular metabolism and thus major physiological functions
(e.g. locomotion, digestion). Therefore, ectotherms stay inactive for
several months, secluded in thermally buffered den (Ultsch, 1989).
This period is an important facet of ectotherms life history for at least
three reasons. First, the selection of appropriate shelter is critical to
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avoid low temperatures and associated mortality risks. Second, for most
of these species, reproduction occurs immediately following emer-
gence; which suggests that the changes in neurophysiology that charac-
terize reproduction are likely to occur and thus to be triggered during
winter “dormancy” (Lutterschmidt and Mason, 2009). Finally, during
this period food intake is absent and specific mechanisms are triggered
to optimise energy conservation (Patterson and Davies, 1978; Hailey
and Loveridge, 1997; Tattersall and Ultsch, 2008). In turn, individuals
can mobilize these body reserves to fuel both emergence and early
reproductive mechanisms upon emergence (Chen et al., 2013) despite
reduced feeding opportunities.

In cold and temperate areas, current climatic alterations, and espe-
cially the increase of surface temperature occurs partly through the
elevation of the annual minima (DeGaetano, 1996; Easterling et al.,
1997; Easterling et al., 2000), thereby producing overall warmer winter,
and thus milder overwintering conditions (Zani, 2008; Williams et al.,
2015). Mild winters are expected to greatly influence the responses of
terrestrial ectotherms to climate change (Williams et al., 2015). Notably,
patterns of resource utilization are likely to be affected by warmer
winter temperature through elevated metabolic rates, while resource
acquisition is limited. Therefore, milder winters are expected to
decrease body condition upon emergence, which, in turn would affect
crucial life-history traits, such as winter and spring survival and repro-
duction (Irwin and Lee, 2000; Zani, 2008; Sorvari et al., 2011;
Zani et al., 2012). Independently from energetic considerations, inap-
propriate overwintering conditions (out of an appropriate thermal
range) may also affect reproduction through the disruption of the neu-
rophysiological mechanisms that trigger reproduction upon emergence
(Lutterschmidt, 2012). Eventually, non-optimal overwintering temper-
ature may cause a state of chronic stress where an individual cannot be
active because temperature is too low, but can neither be dormant
because temperature is too high. Corticosterone (CORT), both involved
in energy use and response to stress in terrestrial ectotherm, has previ-
ously been shown to increase at non-optimal body temperatures
(Li et al., 2011; Dupoué et al., 2013; Telemeco and Addis, 2014, but see
Sykes and Klukowski, 2009). Importantly, high circulating levels of
CORT are known to negatively interact with animal long-term survival
(Breuner et al., 2008; Goutte et al., 2010) or reproduction (reviewed
in Bonier et al., 2009). Taken together these elements suggest
that mild wintering conditions due to current climate change could
negatively affect temperate ectothermic vertebrates, through altered
patterns of energy conservation and direct (neurophysiological mecha-
nisms, chronic stress) and indirect (through reduced body conditions)
effects of suboptimal temperatures on animal fitness.

In this study, we examined the influence of overwintering tempera-
ture on patterns of mass loss and baseline CORT upon emergence in
a typical temperate ectothermic vertebrate, the aspic viper (Vipera
aspis). We experimentally simulated different wintering conditions for
three groups of aspic vipers (cold: ~6 °C, mild: ~14 °C and no wintering:
~24 °C) during a one month long period. Specifically, we expected body
mass loss during dormancy to be positively related to temperature.
Upon emergence, we also predicted baseline CORT to be abnormally
high in the mild wintering temperature group because of chronic stress.

2. Materials and methods
2.1. Study species and husbandry

The aspic viper (V. aspis) is a typical small sized (~50 cm) temperate
western palearctic snake species. Individuals are active from early
March to the end of October, and rely on sit-and-wait foraging mode
to accumulate vast amounts of energy before reproduction (capital
breeding), resulting in low reproductive frequency (Naulleau and
Bonnet, 1996; Bonnet et al., 1999). From October to late February indi-
viduals seclude in thermally buffered underground refugia where they

attain a relatively low and constant body temperature (~5-7 °C)
(Duguy, 1962).

In this study, we used adult, captive-born snakes from a colony
raised at the Centre d'Etudes Biologiques de Chizé (CEBC) since 2009.
Individuals were maintained in plastic boxes (30 x 16 x 10 cm)
containing a shelter and a water bowl with water ad libitum. A thermal
gradient (18-40 °C) was created by a heating cable located at one side of
the cage. Snakes were fed with mice once every two weeks.

2.2. Experimental design

We exposed non reproductive snakes to ecologically relevant ambi-
ent temperature (T,) simulating different wintering conditions. Vipers
were moved to a transparent plastic box (35 x 25 x 12.5 cm) and trans-
ferred in a climatic chamber (Vétsch Industrietechnik,VP 600, Balingen,
Germany). The cold treatment (T, = 5.7 + 1.7 °C) was designed to
mimic the temperature in typical winter den (Duguy, 1962; Shine and
Bonnet, 2009). The control treatment (T, = 24.0 + 0.5 °C)
corresponded to an optimal temperature selected by active snakes
that are not engaged in any specific activity (e.g., digestion, skin
sloughing or reproduction, Ladyman et al., 2003). Finally, we subjected
a group of vipers to a mild winter treatment (T, = 13.9 &+ 0.4 °C). This
temperature was selected to simulate warmer winter conditions due
to elevation of annual minima.

Snakes were randomly assigned within sexes to a treatment (Table 1).
At the onset of experiment, females were heavier and had lower CORT
levels than males (both p < 0.02, Table 1), but within sexes, snake body
mass and CORT levels were similar between treatments (both p > 0.7,
Table 1).

The experiment was conducted between December and January
2013 consistent with natural biological cycle of snakes (see above).
However, in order to limit putatively deleterious effects (i.e., strong
body mass loss in the control group), we limited the duration of the ex-
periment to one month (35 + 2 days). Two weeks before exposure to
wintering treatment, all snakes were acclimatized to the control treat-
ment (no wintering, T, = 25 °C). Temperature of each climatic chamber
was recorded using miniature temperature data logger (Thermochron
iButtons, Dallas Semiconductor, Dallas, TX, USA), to control for potential
deviations. Snakes were kept unfed during the experiment to avoid po-
tential effect of contrasted feeding activity between treatments on body
mass and CORT levels. In order to mimic the conditions of a typical
winter den, drinking water was not available.

2.3. Physiological parameters

2.3.1. Body mass

We measured the change of body mass over exposure to wintering
treatment as an index of change in snake body reserve (Lourdais et al.,
2002a, 2002b). Initial and final body masses were measured at the
onset and the end of the exposure to wintering treatment respectively.

2.3.2. Baseline CORT

We measured the changes in baseline CORT level as an indicator of
putative chronic stress (Wingfield et al, 1998; Sapolsky et al., 2000;
Landys et al., 2006). Blood samples were collected in a random order
at the onset and the end of the treatment. Within less than 4 min
(mean 4 SE: 3.35 £ 0.12 min), we collected blood samples (100 pl)
via cardiocentesis using a 1 ml syringe with a 27-gauge heparinized
needle. CORT levels were not related to handling time (r> = 0.0008,
p = 0.78, n = 98), and were therefore considered to be representative
of “baseline CORT” levels. Immediately after collection, blood from each
sample was placed into a 0.675 ml microcentrifuge tube and centrifuged
for 3 min at 3000 rpm. The plasma was separated, collected and stored
at —28 °C. Plasma CORT concentrations were then determined at
the CEBC by following a well-established radioimmunoassay protocol
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Table 1
Body mass and CORT values at the beginning of the experiment.
Males Females
Cold (N =28) Mild (N = 8) Control (N = 8) Cold (N =38) Mild (N = 8) Control (N =9)
BM (g) 873459 844 + 5.5 885+ 5.5 1275+ 83 1328 £ 7.0 1195+ 9.8
CORT (ng-ml~1) 144+ 24 19.7 £ 4.8 113+24 77 £29 67+19 114 +34

(see Lormée et al. (2003) for details). Samples were run in two assays
(intra-assay variation: 7.07%, inter-assay variation: 9.99%).

We only bled snakes in the morning (from 08:30 to 11:30), to limit
the effect of the time of the day on CORT concentrations, since CORT
could be subjected to circadian variations in snakes (Dupoué et al.,
2013). The day before sampling, we re-exposed all snakes to the control
treatment (T, = 25 °C) because we were interested to investigate puta-
tive effects of the treatment upon emergence. In addition, this allowed
to facilitate blood sampling (which is difficult at low temperature be-
cause of low heart rate and blood flow) and to control for the influence
of temperature on CORT levels (see Dupoué et al., 2013).

3. Results
3.1. Body mass

We found a significant effect of the treatment on adjusted mass loss
(ANCOVA on the body mass change with treatment and sex as the fac-
tors and the initial body mass as the covariate, temperature effect:
F544 = 6.60, p = 0.003, Fig. 1). Body mass loss was significantly lower
in the cold treatment (Fisher's LSD, p < 0.007) and similar in the two
warmer treatments (Fisher's LSD, p = 0.438, Fig. 1).

3.2. Baseline CORT levels

We found an effect of the treatment, the sex and their interaction on
the change in baseline CORT levels (ANCOVA on the CORT change with
treatment and sex as the factors and initial baseline CORT as the covar-
iate, temperature effect: F» 4, = 39.27, p < 0.0001, sex effect: Fy 4, =
7.89, p = 0.007, and their interaction: F, 4, = 4.23, p = 0.02, Fig. 2).
Baseline CORT levels were significantly higher in the cold treat-
ment (Fisher's LSD, p < 0.0001), and within this treatment, males
had significantly higher baseline CORT levels than females (Fisher's
LSD, p < 0.002).
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Fig. 1. Body mass change (adjusted to initial body mass) throughout the experiment
for snakes maintained under contrasted wintering conditions (cold: 5.7 £+ 1.7 °C,
mild: 13.9 & 0.4 °C and no wintering: 24.0 + 0.5 °C).

4. Discussion
4.1. Body mass loss

According to our first prediction, we found that mass loss was influ-
enced by temperature. We found the lowest body mass loss in the
colder treatment, which indicates that low winter temperatures are as-
sociated with low metabolic rate and therefore energy conservation
(Patterson and Davies, 1978; Hailey and Loveridge, 1997; Irwin and
Lee, 2003; Tattersall and Ultsch, 2008). Unexpectedly, we found that
snakes maintained in mild wintering condition (~14 °C) lost, on aver-
age, as much mass as the control (active, ~24 °C) snakes (Fig. 1). Clearly,
this result indicates that mild wintering temperature resulted in higher
metabolism that translated in significant energy use (Patterson and
Davies, 1978; Hailey and Loveridge, 1997). This pattern of body mass
loss under mild wintering conditions can have very strong implications.
First, reduced body condition has been identified as a direct cause of
mortality in wintering and emerging snakes (Hirth, 1966; Shine et al.,
2001). Emergence involves a need to revive basic organismal functions,
and emaciated organisms may not be able to sustain such an energy de-
mand (Irwin and Lee, 2003; Zani et al., 2012). Second, in the aspic viper,
both sexes are typical capital breeders that rely on previously accumu-
lated reserves to fuel reproduction and reproductive behaviours
(Naulleau and Bonnet, 1996; Aubret et al., 2002). In males, abdominal
fat stores are the sole source of energy during the sexual vernal anorexia
(Bonnet, 1996; Vacher-Vallas, 1997). Reproductive effort is adjusted
to their body reserves and males in higher body condition tend to
have higher levels of circulating testosterone (Aubret et al., 2002).
This reliance on previously stored reserves to fuel current reproduction
is even more marked in females which accumulate vast amounts
of energy stores during several years prior to reproduction (Naulleau
and Bonnet, 1996). Feeding activity is highly reduced during reproduc-
tion (Bonnet et al., 2001; Lourdais et al., 2002a, 2002b). In our study,
snakes wintering under mild conditions have lost an average of 5 g
over the duration of our experiment. Over the whole duration of a
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Fig. 2. Baseline CORT change (adjusted to initial baseline CORT) throughout the experi-
ment for snakes maintained under contrasted wintering conditions (cold: 5.7 & 1.7 °C,
mild: 13.9 £ 0.4 °C and no wintering: 24.0 4 0.5 °C).
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typical winter (e.g., ~5 months), this may represent a mean value of 25 g
(i.e. respectively 20% and 30% of the initial body mass of females and
males) of body reserves lost to fuel reproduction. Clearly, such a loss
of previously stored reserves should greatly alter reproductive perfor-
mances in both males and females. Although greater mass loss rates
were predictable at mild temperature (Irwin and Lee, 2000, 2003;
Hahn and Denlinger, 2007; Muir et al., 2013), the magnitude of such
loss was unexpected, especially at a temperature (~14 °C) markedly
below thermal preferences. It is plausible that although snakes were
maintained at low temperature, their activity level may have been suf-
ficient to induce significant energy use, and thus mass loss. Overall,
our results suggest that the inverse thermal compensation involved to
save energy at low temperature (Patterson and Davies, 1978) cannot
be achieved at mild wintering conditions. On the contrary, it is plausible
that mild wintering conditions induced a thermal compensation that re-
sulted in higher metabolism and significant energy use (Patterson and
Davies, 1978; Hailey and Loveridge, 1997).

4.2. Corticosterone levels

Contrarily to our prediction, we did not detect higher baseline CORT
levels in the mild wintering temperature group. Indeed, baseline CORT
in this group was similar to those assessed in the control group
(Fig. 2), which could indicate that mild wintering temperature did not
trigger a state of chronic stress due to inadequate thermal conditions
(i.e. for which an individual cannot be active because temperature is
too low, but can neither be dormant because temperature is too high).
However, several studies have shown that CORT increases at non-
optimal body temperatures (Li et al., 2011; Dupoué et al., 2013;
Telemeco and Addis, 2014, but see Sykes and Klukowski, 2009).

Although we cannot rule out that mild wintering treatment did not
trigger a state of stress in our experiment, two alternative explanations
could also explain this result. First, we imposed a relatively short win-
tering period (1 month) in order to limit body mass loss in the control
group (25 °C). This duration may have been too limited to produce a
state of chronic stress in the mild wintering treatment group. Although
this hypothesis seems relatively unlikely (i.e., CORT levels increase
much more rapidly in other studies, see Dupoué et al., 2013 for in-
stance), future studies could usefully explore the impact of mild winter-
ing treatment on CORT levels in snakes maintained in experimental
conditions for a longer period of time. Second, because we were inter-
ested in the processes occurring upon emergence, and because blood
sampling is impaired at low temperature, experimental snakes were
re-exposed to warm (~25 °C) temperature one day before the final sam-
pling. It is plausible that this short exposure to warmer temperature
allowed clearance of putative excess CORT levels and such potential
mechanisms needs further investigations.

Although we did not detect higher baseline CORT in the mild winter-
ing temperature group, we did detect a strong increase in CORT levels in
the cold group (Fig. 2). While our experiment does not allow teasing
apart whether this increase occurred over the duration of the treatment,
or represents a peak linked to return to warm conditions, previous stud-
ies suggest the latter is more likely (Lutterschmidt and Mason, 2009;
Lutterschmidt, 2012). Indeed, CORT is known to be linked with energy
demands (e.g., Astheimer et al., 1992) and the increase we detect sug-
gests that CORT secretion may be linked to the resource mobilization oc-
curring at the onset of emergence to revive basic organismal functions
(Lutterschmidt and Mason, 2009). Interestingly, we found that males
display a stronger peak in baseline CORT upon emergence than females
(Fig. 2), suggesting that physiological and/or behavioural changes
linked to reproduction may be triggered by CORT levels upon emer-
gence (Lutterschmidt and Mason, 2009; Lutterschmidt, 2012). If this
hypothesis is true, then the absence of baseline CORT surge under
mild wintering condition may negatively affect the setting up of some
aspects of reproductive physiology and/or behaviour, at least in males
(Lutterschmidt and Mason, 2009; Lutterschmidt, 2012). Such an

indirect and unexpected effect of mild wintering condition on subse-
quent reproductive physiology and behaviour, and especially the role
of CORT as a potential mediator, will require further investigations
(Lutterschmidt and Mason, 2009; Lutterschmidt, 2012).

More generally, we found that altered (mild) winter temperatures
can strongly affect wintering temperate ectotherms (Williams et al.,
2003; Zani, 2008; Zani et al., 2012; Muir et al., 2013). Most notably,
the fitness of these organisms can be influenced both through proxi-
mate (reduced body condition and altered physiology upon emergence)
and ultimate (influence on reproduction) effects. Such disruption of re-
production may ultimately affect population persistence (Parmesan,
2006). We emphasize that future studies should incorporate the critical,
albeit neglected, winter season when assessing the potential impacts of
global changes on ectotherms (Williams et al., 2015).
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