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Antarctic polynyas are persistent open water areas which enable early and
large seasonal phytoplankton blooms. This high primary productivity, boosted
by iron supply from coastal glaciers, attracts organisms from all trophic levels
to form a rich and diverse community. How the ecological benefit of polynya
productivity is translated to the highest trophic levels remains poorly resolved.
We studied 119 southern elephant seals feeding over the Antarctic shelf and
demonstrated that: (i) 96% of seals foraging here used polynyas, with individ-
uals spending on average 62% of their time there; (ii) the seals exhibited more
area-restricted search behaviour when in polynyas; and (iii) these seals gained
more energy (indicated by increased buoyancy from greater fat stores) when
inside polynyas. This higher-quality foraging existed even when ice was not
present in the study area, indicating that these are important and predictable
foraging grounds year-round. Despite these energetic advantages from using
polynyas, not all the seals used them extensively. Factors other than food
supply may influence an individual’s choice in their use of feeding grounds,
such as exposure to predation or the probability of being able to return to
distant sub-Antarctic breeding sites.

1. Introduction

Polynyas are recurrent areas of open water or fragmented thin ice surrounded
by higher-density sea ice [1]. Around Antarctica, during autumn and winter,
coastal polynyas are generally maintained by katabatic winds advecting
newly formed sea ice away [2,3]. The brine rejection during recurrent sea-ice
formation results in dense water that sinks, enhancing the vertical transfer of
nutrients and gases, and acting as a precursor of the Antarctic bottom water
which forms the deepest layer of the world ocean [4]. These physical processes
linking atmospheric-ocean-ice dynamics contribute to high values of oceanic
heat loss [5], ocean ventilation, plus drawdown of atmospheric CO, due to pri-
mary productivity [6-8], making them relevant to the mitigation of human-
induced climate change [9]. Because Antarctic polynyas maintain a thin ice
cover during winter [10-12] they are the first areas to melt during spring
[13], enabling earlier and larger seasonal phytoplankton blooms thereby enhan-
cing energy transfer through the food web [7,13]. Through increased vertical
carbon flux, polynyas can also support rich benthic communities [14,15].
During spring and summer, when polynyas are no longer in the active sea-
ice production phase, these locations may be regarded as ‘post-polynyas’
[13,16]. The benefits of high seasonal primary productivity described above,
often boosted by iron supply from nearby coastal glacier basal melt, persist
through the summer season and into autumn [7,13]. Because these post-
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polynyas are geographically stable and because they retain
many of the biologically (and biogeochemically) important
features such as enhanced productivity, they remain areas
that attract larger predators such as marine mammals and
seabirds [16,17]. Consequently, polynyas are considered
important ‘biological hotspots’ for organisms from all trophic
levels, forming rich ecosystems and representing important
year-round habitat for air-breathing marine predators [17-24].

Due to their predictable recurrence within the otherwise
highly variable sea-ice environment [1,25], polynyas provide
areas of open water where diving predators can resurface for
air [19,24], especially important in winter when the continen-
tal shelf and surrounding waters are largely ice-covered
[12,26]. Exactly how the potential ecological benefit of poly-
nya productivity is translated to the highest trophic level
(e.g. via increased foraging opportunities, enhanced growth
and/or reproduction), has rarely been quantified and
remains poorly resolved [13,27,28]. Consequently, whether
polynyas actually offer enhanced energetic benefit for fora-
ging Antarctic predators, as opposed to fulfilling a physical
habitat requirement (such as access to open water), remains
somewhat speculative [13,23,29].

Southern elephant seals (Mirounga leonina) are large,
wide-ranging predators that forage seasonally within Antarc-
tic shelf waters, including coastal polynyas [23,24], where
they feed on benthic, epi-benthic and mid-water prey
[30,31]. They are one of the few upper trophic species
where it is possible to evaluate the importance of polynyas
because of the capacity to quantify in situ changes in their
body condition [32-34]. As capital breeders with a cata-
strophic moult, individual seals fast on land for several
weeks during the two energetically demanding breeding
and moult periods, with the energy for these fasts needing
to be acquired at sea beforehand [35]. Hence, elephant seals
show lower body condition after these fasting periods, typi-
cally followed by a progressive increase in condition as they
recommence foraging and replenish their energetic reserves
[32]. These changes may be identified through changes in
buoyancy manifested in their vertical drift rates [32,36].

Focusing on elephant seals tracked in the East Antarctic
region (from the Kerguelen plateau population), we first
examine polynya usage with respect to their movement be-
haviour, foraging success, sex and tag deployment location.
We then test whether the seals that forage in post-polynya
areas gained more condition than seals that forage outside
these areas (in the surrounding Antarctic waters), thereby
directly quantifying the ecological importance of polynyas
to higher trophic species such as seals.

2. Material and methods
(a) Seal tagging data

More than two hundred southern elephant seals have been instru-
mented in the Indian sector of the Southern Ocean over the last
decade under the Australian Integrated Marine Observing
System [37] and the Service National d’Observation Mammiféres
Echantillonneurs du Milieu Oceanique (SNO-MEMO as part of
the France’s National Antarctic Program (Institut Polaire Frangais
Paul Emile Victor, IPEV) (electronic supplementary material, table
S1). The seals were tagged with conductivity temperature depth —
satellite relayed data loggers (CTD-SRDLs; Sea Mammal Research
Unit, University of St Andrews, UK) on fles Kerguelen (n=112),

the main breeding site of the species in the Southern Indian
Ocean, or at one of two moulting sites in East Antarctica, Prydz
(n=48) and Vincennes Bay (1 = 42). See electronic supplementary
material, table S1 for detailed information of tagging numbers by
year, sex and location. The capture and sedating procedures are
fully described elsewhere [38,39]. CTD-SRDLs record dive depth
data summarized by a broken-stick algorithm [40,41] and trans-
mitted through the ARGOS satellite system [42]. Due to
transmission constraints, the final diving dataset for each seal rep-
resents a random subsample of all dives comprising around 80%
of the total number of dives [40,43].

We used a widely applied hierarchical state-space model
[44,45] to filter ARGOS Doppler locations and provide an
estimate of the seals’” movement behaviour. The hierarchical
state-space model was implemented using the R package bsam
[44,45] in R v. 3.5.2 [46]. In brief, this approach models a behav-
ioural process whereby animals switch between two different
correlated random walks (behavioural states), as introduced by
[44], thereby differentiating periods of relatively directed (in-
transit) and more sinuous (area-restricted search) horizontal
movements. Tracks were processed in batches defined by deploy-
ment year/location [47] with location and behavioural state
estimates provided at regular 6 h intervals.

(b) Estimating changes in body condition

In approximately 3-4% of dives each day, elephant seals are inac-
tive and drift through the water column [33,34]. These drift dives
are characterized by having a phase during which the seal drifts
passively in the water column [32,48], when the rate (cm s™') and
the magnitude and direction of the vertical displacement
depends largely on the seals” buoyancy. The buoyancy of ele-
phant seals is primarily determined by the ratio of blubber:
lean tissue [32]; negatively buoyant seals will descend passively
in the water column when inactive, while positively buoyant
seals will ascend. We processed the CTD-SRDL dive information
after Arce, Bestley [34], identifying all dives with a high prob-
ability of being drift dives (Z>0.5). To assign an average drift
rate to each 6 h location estimate, we fitted to each seal a
generalized additive model (GAM) with a custom link function
that considers the buoyancy model implemented in R package
slimmingDive [49].

(c) Definition of temporal coverage, geographical study
region and Antarctic foragers

We focused on the seals” winter post-moult trips, during which
they are at sea for 8-10 months (figure 1). After moulting, seals
have relatively low body condition that must be recovered [50].
The speed of recovery of fat reserves is highest during the early
phase of the trip, after which the seals approach neutral buoyancy;
at neutral buoyancy, their cost of transport within the water
column is minimal [51]. This typically occurs during mid-
summer to late autumn when large areas of the Antarctic shelf
are ice-free and available to foraging seals [7]. Therefore, during
this time, we can test behavioural and foraging differences
between post-polynya areas and the rest of the Antarctic region.
To focus on this critical period of recovering body condition, we
analyse drift dive data over the first two months (60 days) each
seal spent foraging at sea. In most cases, this covers February—
April but there is variability between individuals (figure 1b).

The use of the Southern Indian Ocean by elephant seals can be
broadly considered as either sub-Antarctic or Antarctic [30,31,52].
A density plot of latitudes obtained from the tracks shows a strong
bimodal distribution matching these two categories. We demar-
cated the latitude with the minimum density value (58.50°5) as
the sub-Antarctic/ Antarctic threshold (electronic supplementary
material, appendix S2, figure S1) and defined Antarctic foragers
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Figure 1. (a) Map showing filtered post-moult foraging tracks of 119 southern elephant seals instrumented at fles Kerguelen (KI; red, n = 50; 49.35° S, 70.22° F) and in
the East Antarctic (blue, n = 69; tagging locations are nearby the polar research stations at Casey (CS) [66.28° S, 110.53° E] and Davis (DS) [68.58° S, 77.97° EI). The
commencement of drift diving behaviour (considered onset of foraging) is represented by a coloured circle. (b) Heatmap showing drift rates (cm s™") indicating seal body
condition through time, where darker blue indicates poorer condition whereas at the lightest colour seals are positively buoyant (i.e. cm s~' > 0). One individual seal is
represented per row (n = 119). Horizontal axis shows month; here 1 to 12 is continuous, with month 12 referring to December for tags that transmitted throughout the
year (i.e. cessation before moult). Month 0 is prefixed for those seals tagged in December the year prior. (Online version in colour.)

as those seals which spent at least 50% of the 60-day period south
of 58.50°S. All individuals providing drift rate information for at
least 10 days were included, as they provide drift rate change tra-
jectories of sufficient duration to quantify changes in condition.
Electronic supplementary material, appendix S2, table S1 pro-
vides a summary of the seal data (n=119 individuals)
considered in this study.

Seals may delay the start of foraging while in transit to the
forage grounds or commence feeding opportunistically en route
[36]. Since drift dives are thought to be related to food processing
and resting [36,53,54], we defined the start of foraging for indi-
vidual seals (time zero [t)]) when seals first made a drift dive.
We then calculated the rate of change in the drift rate for each
subsequent location (ADr;) as the difference between the drift
rate values, obtained from the GAM smoothing at the current
(Dr;) and previous (Dr;_;) locations, divided by the time
increment between them (AT)):

_ (Dr; —Driy)

ADI'Z' AT
i

(2.1)

(d) Quantifying polynya usage and foraging success
Following other recent ecological studies [16,55], we used the
East Antarctic coastal polynyas areas identified by Arrigo &
van Dijken [13] (as shown in their fig. 1b). These are calculated
based on the percentage of ice-free winter days and considering
the horizontal extent of the associated phytoplankton blooms
[13]. As stated above, outside the active ice-formation periods
the geographic location of these polynyas may be regarded as
‘post-polynyas’.

We evaluated the ecological importance of polynyas to ele-
phant seals in two ways, looking at: (i) predictors of polynya
usage and then (ii) quantifying their ecological benefit. For the
first we fit generalized linear mixed models with the response
variable being whether a seal location was inside or outside a
polynya area, using a binomial distribution. This was done to
establish if seal foraging behaviour varied in and out of poly-
nyas. For this, the fixed effects were behavioural state (ranging
between 1: in-transit and 2: area-restricted search), sex (male or
female), tagging location (fles Kerguelen or Antarctic coast) and
ADr (i.e. the drift rate change). Seal identity was included as a
random effect in all mixed models. We fitted the candidate

models using R package Ime4 [56], assessing all combinations
of fixed effects using the R package MuMIn [57] and comparing
them using AICc [58].

For (i), we then established whether foraging success was
different when seals were in or out of polynyas. Here, we
fitted linear mixed models using ADr rate (as measure of foraging
success) as the response variable. Fixed effects were polynya (inside
or outside), tagging location (les Kerguelen or Antarctic coast),
behavioural state estimate (ranging between 1: in-transit and 2:
area-restricted search) and sex (male or female). We incorporated
a continuous time autocorrelation structure (corCAR1) given the
values generated by the (smoothing) GAM function were not inde-
pendent. Again, seal identity was included as a random effect in all
mixed models. We fitted candidate models with the R package nlme
[59] and compared them as above. The dataset supporting this article
is available in the electronic supplementary material, appendix S1.

3. Results

(a) Number of seals using the Antarctic region

Overall, 45% (n=50) of seals instrumented at Iles Kerguelen
spent at least half their time within the Antarctic region. More
males 50% (1 = 28) than females 33% (1 =22) used the Antarctic
region (electronic supplementary material, appendix S2 and
table S1). The first drift dive was recorded either during transit
or after arriving at the Antarctic shelf, at an overall average dis-
tance of 837 km from the island (s.d. =579, n=>50; figure 1a;
electronic supplementary material, appendix S2 and figure S2).
Of those seals instrumented in Antarctica, 96% remained as Ant-
arctic foragers (electronic supplementary material, appendix S2,
table S1), commencing foraging at an average distance of 67 km
(s.d. =48, n=69) from the tagging location (figure 14; electronic
supplementary material, appendix S2, figure S1).

(b) Body condition at the onset of foraging

Elephant seals had negative drift rates at the start of their post-
moult foraging trips (figure 1b). The mean overall drift rate at
the start of the foraging period was —29 cms™' (s.d. =6 cms™,

n=119), and drift rate was lower for individuals instrumented
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Figure 2. Maps showing the ice concentration in the study site on 7 March and 24 April 2012. We have chosen 2012 as this was the year with the greatest number
of instrumented seals using the Antarctic continental shelf. Also shown are the tracks of seals (coloured points: yellow indicates in-transit and indigo indicates more
resident behaviour; see figure 3) in the region 3 days either side of those dates. Background colour shows ASI Algorithm AMSR-E sea-ice concentration (%) data at
6.25 km resolution obtained from the Integrated Climate Date Center (ICDC, icdc.cen.uni-hamburg.de/), University of Hamburg, Hamburg, Germany [60,61]. The red
polygons indicate the seven post-polynya areas [13] located within the study domain. (Online version in colour.)

at Iles Kerguelen (mean = —31.95, s.d. =5.96, n = 50) than those
instrumented in Antarctica (mean=—-27.52, s.d.=5.12, n=69;
t-test = —4.14, p <0.001). Males instrumented at Tles Kerguelen
and Antarctica had mean starting drift rates of —33 cms™
(s.d.=6, n=28) and 28 cms™! (s.d.=5, n=67), respectively.
Females instrumented at fles Kerguelen had a mean starting
drift rate of =30 cm s™! (s.d. =5, n =22), while the two females
instrumented in Antarctica had starting values of —14 and
—26 cm s™!, respectively.

() Polynya usage and movement behaviour

Ice extent and concentration changed considerably during the
study period (figure 2). In early March, when the seals
arrived on the Antarctic shelf, very little of the region had
any ice cover, but some of the seals used post-polynya
areas. By the end of the study period in late April, the ice
extended northwards over the shelf, with seals using regions
of both high and low ice concentration, within and outside
the permanent polynyas.

Twenty-seven of the 28 Antarctic foraging males instrumen-
ted at fles Kerguelen (96%) spent some time in coastal polynyas
or post-polynyas (median=62% of total time, range=3.4-
100%; electronic supplementary material, appendix S2,
figure S3). All the male seals instrumented in Antarctica (1=
67) similarly spent some time inside polynyas or post-polynyas
(median = 64% of total time, range = 1.4-100%). In comparison,
only four of 22 (18%) females from iles Kerguelen that travelled

‘resident’
1.5
1.4
1.3
1.2
1.1
1.0

‘transit’

Figure 3. Map showing movement behaviour as estimated using hierarchical
state-space switching models (see Material and methods). Yellow (values
close to 1) indicates in-transit areas and darker colours indicate more resident
behaviour (indicative of area-restricted search). Red polygons demarcate post-
polynya areas [13]. Data shown as average values per 50 km grid cell aggre-
gated across all individual seals. (Online version in colour.)

to the Antarctic region spent time in coastal polynyas or post-
polynyas (0.4, 2.5, 27 and 40% of their total time; electronic sup-
plementary material, appendix S2, figure S3). The two females
instrumented in Antarctica remained as Antarctic foragers but
unlike the male seals spent little time inside polynyas (1.6
and 36% of their total time).

Seal movements exhibited clear transit behaviour
between the breeding colony and the Antarctic shelf when
outbound from Tles Kerguelen (figure 2). Once over the
Antarctic shelf region, area-restricted search behaviour was
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Table 1. Results of mixed effect models for predicting (a) polynya usage and (b) foraging success (i.e. positive drift rates). Parameters with statistically [}

significant slopes (p < 0.05) are highlighted in italics. For factor variables, the parentheses indicate which factor level is represented; for example, in (a)
Kerguelen males represent the reference level, and the effects of sex (females) and tagging location (Antarctic deployments) are reported relative to this.

(a) polynya usage

fixed effects coefficient + s.e.
intercept (Kerguelen male) —0.14 +0.37
behavioural state

g psom
sex (female) —6.19 + 0.64
taggmg Iocat|on(Antarct|c) s

(b) foraging success (A drift rate)

fixed effects

intercept (Kerguelen male) 0.05 + 0.009
polynya usage (in) 0.07 £ 0.003

. bsek”(febm‘ablle)” o s
tagging location (Antarctic) 005+ 0.017
behavioural state 0.07+0.002

evident inside and immediately around the post-polynya
regions (figure 3).

The best model for polynya usage retained sex, ADr and
behavioural state as predictors (table 1). The two highest
ranked models (with or without fagging location) were essen-
tially equivalent (i.e. AAIC<1; electronic supplementary
material, appendix S2, table S2). Antarctic foraging males
that were instrumented at fles Kerguelen or on the Antarctic
continent were therefore equally likely to visit polynya areas,
while females, regardless of their tagging location, were
much less likely to visit polynyas than males. Locations
inside polynyas were associated with more area-restricted
search behaviour and with positive changes in drift rates (elec-
tronic supplementary material, appendix S2, figures 54-56).

(d) Relative foraging success in polynyas as determined

from changes in drift rate
For seals (1=90), with drift rate information for the full
60-day period, the mean drift rate was —11 cms™" (s.d.=13)
with an average increase of 0.31 cm d™" (s.d.=0.21) over the
60-day period. While almost all seals gained body condition
during this time, the rate of body condition change (ADr;)
was higher inside than outside polynya or post-polynya
areas (table 1; electronic supplementary material, appendix
S2, table S3). This is illustrated in figure 4 where seals with
relatively low polynya usage had drift rate of around —
15cms™" at the end of 60 days compared to seals with high
use of polynyas which had drift rates around 0 cms™" (or
neutral buoyancy) after 60 days. There were no significant
differences in terms of the rate of change between males
and females (table 1). However, Antarctic instrumented
seals (predominantly males) with high use of polynyas
gained condition faster (mean=0.11cm d!, sd.=
0.16cmd™") than equivalent seals from Iles Kerguelen

0.65+0.02

coefficient + s.e.

—0.38 0.70
3232 <0.007
-9.67 <0.007

t-value
5.06 <0.001
2.93 0.003
...... e
441 ‘ <0.001
,,,,,, i S

(mean=0.07cmd™!, s.d.=0.07cmd™!), hence there is a
bimodal distribution evident in drift rates (figure 4).

4. Discussion

Antarctic coastal polynyas and post-polynyas are biological
hotspots that support high rates of primary production, and
the productivity associated with these polynyas is thought
to be a critical food source for some of the most abundant
top predators in Antarctic waters including penguins,
albatrosses and seals. However, few studies have directly
demonstrated the foraging benefit of energy consumed
within polynyas by upper trophic levels. Our study directly
quantifies both polynya usage and the differential benefit
for elephant seals foraging within and outside Antarctic
coastal polynyas. The use of a valuable proxy for fat:lean
tissue, available while animals are at sea, shows foraging
success is greater inside polynyas.

Most seals that foraged on the Antarctic continental shelf
used polynyas, with individuals spending an average of 62%
of their time in a polynya. Seals inside polynyas exhibited
more area-restricted search behaviour and gained more
energy (indicated by increased buoyancy from greater fat
stores) than seals outside of the polynyas. This clearly
demonstrates that polynyas are productive feeding locations,
providing corroborating evidence that polynyas provide
higher prey resources. However, the underlying mechanisms
for how this occurs remains unclear. One hypothesis is that
higher primary production translates to higher biomass of
potential prey, but the empirical demonstration of this in
terms of foraging success has been elusive. The magnitude
of annual production in coastal polynyas can help explain
the variance in Adélie penguin (Pygoscelis adeliae) colony size
[13]. Recent work showed pup production by ice-dependent
Weddell seals (Leptonychotes weddellii) to be positively
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Figure 4. Drift rate (cm s™") time series for Antarctic foraging southern ele-
phant seals (n=119). For visualization, the time series from individuals are
separated according to usage of post-polynya areas: seals that spent less than
one-third of their time inside post-polynya areas (a) (low polynya usage),
between one-third and two-thirds of their tracked time inside post-polynya
areas (b) (medium polynya usage) and more than two-thirds of their time
inside post-polynya areas (c) (high polynya usage). Lines show the estimated
drift rate from the fitted GAMs for seals instrumented at Tles Kerguelen (red,
n=150), and in Antarctica (blue, n=69). Violin plots show the distribution
of drift rates at the start and end of the 60-day period. (Online version in colour.)

associated with annual primary production in the McMurdo
Sound polynya, Ross Sea [27]. Our study shows a direct
improvement in elephant seal body condition in polynya-
foraging animals in the East Antarctic. By inference, polynyas
should also provide better foraging for other predators that
rely on mesopelagic prey, such as emperor penguins (Apteno-
dytes forsteri) [62], although this species sometimes favours
smaller and ephemeral polynyas, rather than the large,
predictable ones [29].

Seals also spent some time outside polynyas (on average
38% of their time), despite polynyas offering a clear advan-
tage in terms of resource availability. This may be because
not all Antarctic polynyas are equally biologically productive
[7] due to differences in nutrient inputs (primarily iron; for
example from ice shelf melt [63,64]), which may also translate
to different prey field characteristics (e.g. [65]). Our study has
undertaken a broad-scale assessment of the relative impor-
tance of polynyas without accounting for individual

differences among polynyas, as this would require a much
larger sample of seals to resolve. However, coastal polynyas
may differ considerably in size, intensity (ice formation
rates), physical structure and water transformation processes,
seasonal persistence and productivity [66]. Along with a
greater sampling effort inside and outside of polynyas,
future work quantifying the importance of productivity
within specific polynyas for the performance of the broad
suite of animals using them would allow us to more accu-
rately account for differences at the regional scale.

Seals and penguins will also forage in open water features
other than polynyas, such as leads and tide cracks, where
they may catch sufficient food to meet their energetic require-
ments [28]. Animals do not necessarily need to forage in the
best available habitat and can succeed in habitats that are
‘good enough’ [67]. Alternatively, animals may balance
food acquisition with potential risks, such as increased preda-
tion at the best foraging spots [68]. Presumably, if an area is
important to meso-predators such as seals or penguins it is
also likely to be attractive to their predators, such as killer
whales (Orcinus orca) [31,69]. Risk of predation has been
shown in other systems to displace animals to sub-optimal
forage habitat [70]. However, given the dearth of information
on the presence, distribution and behaviour of apex predators
such as killer whales during the late summer and winter
periods in the Antarctic much remains to be learnt on the
predator—prey dynamics in polynyas and how it influences
animals there [71-73].

Sex-specific differences have been previously identified in
the use of polynyas, with adult female southern elephant
seals rarely using polynyas and the Antarctic continental
shelf [30,31,74], noting that these studies used a subset of
the same seals that we report on here. Even though females
rarely use polynyas, when they do, they have similar levels
of foraging success to the males indicating that polynyas
are a potential high resource area for both sexes. The question
then arises, why don’t more females exploit this resource? A
potential explanation could be sex-specific resource partition-
ing driven by the different absolute energetic requirements
for males and females as a consequence of their extreme
sexual dimorphism [31]. This hypothesis is supported by an
increase in trophic level of males as they age [75,76], whereas
females do not exhibit a major dietary shift in relation to their
age and breeding status [52]. The winter sea-ice environment
is highly dynamic both within and between years [77] pre-
senting a challenging environment for the animals that live
there. The benefit of foraging in polynya or post-polynya
regions may not compensate for the risks of (i) females
being entrapped by ice when ready to return to breeding
colonies to pup [78] or (i) a higher risk of predation
[31,79]. However, quantifying at-sea mortality and ascribing
it to a specific predation event is difficult [69]. Immature
male seals, unlike females, are not obliged to return to breed-
ing colonies and may therefore trade off potentially higher
risk for enhanced feeding opportunities that allow faster
growth rates and increased size. The benefits of size are mani-
fest in greater breeding opportunities given that only the
largest males successfully hold harems and have the greatest
reproductive output [80,81]. Consequently, there is a strong
selection for the sexes using different foraging areas that
have different prey assemblages.

There is low confidence in the prognoses for polynya
activity in the future [9]. Calving and collapsing ice shelves
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(e.g. Mertz Glacier Tongue, Larsen A and B), creating polynyas
in their wake, can increase local primary production [82,83].
Changes in basal ice shelf melt rates could increase iron
supply and water column productivity. Under anthropogenic
climate change, some models indicate that surface freshening
caused by increased precipitation will reduce polynya occur-
rence [84]. The implications for dependent predators foraging
in these areas are unclear and may change phases over scales
of decades or centuries. Improved observations of biophysical
interactions [85,86], linking iron supply, polynya productivity
and foraging predators is a priority for developing prognoses
of ecosystem change in these Antarctic biological hotspots.
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